

Department of Water Resources

BULLETIN No. 130-68

HYDROLOGIC DATA: 1968 Volume I: NORTH COASTAL AREA

FEBRUARY 1970

DNALD REA

State of

Governor

California

PH SCI LIE

STATE OF CALIFORNIA The Resources Agency Department of Water Resources

BULLETIN No. 130-68

HYDROLOGIC DATA: 1968 Volume I: NORTH COASTAL AREA

Copies of this bulletin at \$2.00 each may be ordered from: Office of Procurement DOCUMENTS SECTION P.O. Box 20191 Sacramento, California 95820 Make checks payable ta STATE OF CALIFORNIA. California residents add 5 percent sales tax.

FEBRUARY 1970

NORMAN B. LIVERMORE, JR. Secretary for Resources The Resources Agency RONALD REAGAN Governor State of California WILLIAM R. GIANELLI Director Department of Water Resources

FOREWORD

The hydrologic data programs of the Department of Water Resources supplement the data collection activities of other agencies and help satisfy needs of these agencies for data on the quality and quantity of water in the State. Bulletin No. 130-68 presents accurate, comprehensive, and timely hydrologic data which are prerequisites for effective planning, design, construction, and operation of water facilities.

The Bulletin No. 130 series is published annually in five volumes. Each volume presents hydrologic data for one of five reporting areas of the State. These areas are delineated on the map on the opposite page.

William R. Gianelli, Director Department of Water Resources The Resources Agency State of California December 19, 1969

METRIC CONVERSION TABLE

ENGLISH UNIT	EQU	IVALENT METRIC UNIT
Inch (in.)	2.54	Centimeters
Foot (ft.)	0.3048	Meter
Mile (mi.)	1.609	Kilometers
Acre	0.405	Hectare
Square mile (sq. mi.)	2.590	Square kilometer
U. S. gallon (gal.)	3.785	Liters
Acre-foot (acre-ft.)	1,233.5	Cubic meters
U. S. gallon per minute (gpm)	0.0631	Liter per second
Cubic feet per second (cfs)	1.7	Cubic meters per minute
Part per million (ppm)	Milligram p	er liter (mg/l)
Part per billion (ppb)	Microgram p	er liter (ug/l)
Part per trillion (ppt)	Nanogram pe	r liter (ng/l)
Equivalent per million (epm)	Milliequiva	lent per liter (me/l)

TABLE OF CONTENTS

AREAL COVERAGE OF VOLUMES	•		•	Page ii
FOREWORD				iii
METRIC CONVERSION TABLE			•	iv
ORGANIZATION			•	vii
ABSTRACT				viii
ACKNOWLEDGMENTS	•		•	viii
APPENDIXES	•		•	
APPENDIX A: CLIMATOLOGICAL DATA	•	•	•	1
Introduction	•	•		3
Figure A-1 Climatological Observation Stations			•	5
Table A-1 Index of Climatological Stations	•	•	•	6
Table A-2 Precipitation Data	•		•	9
Table A-3 Storage Gage Precipitation Data	•		•	11
Table A-4 Temperature Data	•			12
Table A-5 Evaporation Data	•			14
APPENDIX B: SURFACE WATER MEASUREMENTS	•	•	•	15
Introduction				17
Figure B-1 Surface Water Measurement Stations				19
Table B-1 Annual Unimpaired Runoff	•	•	•	20
Table B-2 Monthly Unimpaired Runoff			•	22
Table B-3 Gaging Station Additions and Discontinuations			•	23
Table B-4 Daily Mean Discharge			•	24

TABLE OF CONTENTS (Cont.)

APPEI	NDIX C: GRO	OUND WATER MEASUREMENTS	rage 29
	Introductio	on	31
	Figure C-1	Ground Water Basins, Water Level Measurements	33
	Table C-l	Average Change of Ground Water Levels and Summary of Well Measurements Reported	34
	Table C-2	Ground Water Levels at Wells	35
APPEI	NDIX D: SUP	RFACE WATER QUALITY	37
	Introductio	on	39
	Figure D-1	Surface Water Sampling Stations	41
	Table D-1	Sampling Station Data and Index	43
	Table D-2	Mineral Analyses of Surface Water	44
	Table D-3	Trace Element Analyses of Surface Water	58
	Table D-4	Miscellaneous Constituents in Surface Water	59
APPEI	NDIX E: GRO	OUND WATER QUALITY	63
	Introductio	on	65
	Figure E-1	Ground Water Basins, Water Quality Samples	67
	Table E-1	Mineral Analyses of Ground Water	68
	Table E-2	Trace Element Analyses of Ground Water	73

State of California The Resources Agency DEPARIMENT OF WATER RESOURCES

RONALD REAGAN, Governor NORMAN B. LIVERMORE, JR., Secretary for Resources WILLIAM R. GIANELLI, Director, Department of Water Resources JOHN R. TEERINK, Deputy Director

NORTHERN DISTRICT

Activities covered by this report were under the supervision

of

Robert F. Middleton, Jr. Chief, Hydrologic Data Unit

Assisted by

Linwood L. Bates - Red Bluff Office	•	W.	R.	Er	ngin	nee	ring Associa	ate
Walter D. McIntyre - Sutter Field Office	•	W.	R.	Er	ngin	neer	ring Associa	ate
Alden B. Moore - Climatological Data	•			•	W.	R.	Technician	II
Charles G. Hodge - Surface Water Measurements	5	•			₩.	R.	Technician	II
Seth K. Barrett - Ground Water Measurements				•	W.	R.	Technician	II
Lee R. Gibson - Water Quality					W.	R.	Technician	II

Reviewed and coordinated by Division of Resources Development Program Formulation and Coordination Office Water Resources Evaluation Section

ABSTRACT

The report contains tables showing data on climate, surface water flow, ground water levels, and surface and ground water quality in the North Coastal area during the 1967-68 water year. Figures show the location of climatological stations, surface water measurement stations, surface water sampling stations, and ground water basins.

ACKNOWLEDGMENTS

In the preparation of this report, valuable assistance and contributions were received from several public agencies and many private cooperators. The cooperation of the U. S. Weather Bureau and the U. S. Geological Survey was particularly helpful and is gratefully appreciated.

A special note of thanks is extended to the many loyal and dedicated weather observers whose unselfish efforts have contributed immeasurably to our knowledge of historical weather conditions in Northern California. APPENDIX A

*

CLIMATOLOGICAL DATA

INTRODUCTION

This appendix summarizes monthly precipitation, temperature, wind movement, and evaporation data for the North Coastal area from July 1, 1967, to September 30, 1968. Storage gage data are reported as annual precipitation. The appendix contains weather data collected by cooperating agencies and local observers at 122 stations.

Daily climatologic data, together with local conditions and qualifying remarks, are available in the files of the Department of Water Resources.

To insure accuracy, stations are normally inspected either semiannually or annually to see that the equipment is properly maintained and that observations are generally taken in accordance with U. S. Weather Bureau standards.

Each station in this appendix has been assigned an identification number. The letter and first digit denote the drainage basin as shown below. The remaining digits denote the alphabetical sequence of the station.

North Coastal Area

FO – Sm	ith R	iver
---------	-------	------

- F1 Lost River-Butte Valley
- F2 Shasta-Scott Valleys
- F3 Klamath River
- F4 Trinity River
- F5 Mad River
- F6 Eel River
- F7 Mattole River

the second se

CLIMATOLOGICAL OBSERVATION STATIONS

TABLE A-1 INDEX OF CLIMATOLOGICAL STATIONS

An explanation of the column headings and the code symbols

follows:

40-Acre Tract - This denotes the location of the station within the section in which it is located. The letter code is derived from the diagram to the right.

D	С	В	A
E	F	G	H
М	L	K	J
N	P	ୡ	R

Base and Meridian - The code for this column is as follows:

H - Humboldt Base and Meridian

M - Mount Diablo Base and Meridian

Cooperator Number - This number is assigned from the following list:

O00 Private Cooperators
O06 Northwestern Pacific Railroad
804 California Department of Beaches and Parks
805 California Department of Fish and Game
806 California Department of Water Resources
808 California Division of Forestry
809 California Division of Highways
900 U. S. Weather Bureau
901 Corps of Engineers, San Francisco District
905 U. S. Forest Service

<u>Cooperator's Index Number</u> - This is the number assigned to the station by the agency responsible for, or handling the records of, the station. The U. S. Weather Bureau number is only shown in this column when it differs from the alpha order number.

<u>County</u> - This is a standard code for California counties; those counties used in this appendix are shown below:

County

Del Norte	08
Glenn	11
Humboldt	12
Lake	17
Mendocino	23
Modoc	25
Siskiyou	47
Trinity	53

TABLE A-I

INDEX OF CLIMATOLOGICAL STATIONS FOR 1967-68 NORTH COASTAL AREA

	Station	otion Feet)	tion	iship	agu	re Tract Meridian	tude	515	itude		rator iber	rator's lex iber	ord gan	bord ded	vissing	Code
Number	Nome	Elev (In J	Sec	Towr	Ra	40-Ac Base B	- Loti	11 0	6uoy -	11	Сооре Nuff	Cooper Ind Num	Rec Be	Rec	Years !	County
F6 0018 F6 0088 F5 0253 F3 0715 F4 0738	ADANAC LODGE ALDERPOINT ARCATA A P BESWICK 7 S BIG BAR RANGER STA	1100 435 217 6140 1270	SEC 14 SEC 27 SEC 19 SEC 33 SEC 05	T23N T03S T07N T47N T33N	R17W R05E R01E R03W R12W	H M 39 H 40 Q H 40 M 41 M 40	50 11 58 52 44	48 123 00 123 18 124 00 122 54 123	42 36 05 14 14	00 00 24 00 42	000 900 000 900 900		1950 1940 1957 1952 1943			23 12 12 47 53
F5 0764 F2 0786-01 F3 0899 F5 0901 F4 0929	BIG LAGOON BIG SPRINGS 4 E BLUE CREEK MTN LO BLUE LAKE BOARDCAMP MTN	100 2955 4870 105 4500	SEC 18 SEC 05 SEC 30 SEC 30 SEC 26	T09N T43N T12N T06N T04N	RO1E RO4W RO4E RO2E RO4E	R H 41 R M 41 R H 41 A H 40 H 40	09 35 23 52 42	36 124 30 122 42 123 54 123 12 123	05 19 45 59 42	54 42 54 12 00	000 000 900 000 000	PN2125	1947 1960 1960 1951 1963			12 47 08 12 12
F6 1046 F1 1050 F6 1080 F6 1181 F6 1210	BRANSCOME 2 NW BRAY 10 WSW BRIDGEVILLE 4 NNW BULL CREEK BURLINGTON ST PARK	1480 5759 2050 410 200	SEC 09 SEC 24 SEC 27 SEC 36 SEC 12	T21N T43N TO2N TO1S TO2S	R16W R03W R03E R01E R02E	M M 39 M 41 H 40 H H 40 D H 40	41 34 31 21 18	12 123 00 122 00 123 00 124 30 123	39 08 49 06 54	36 00 00 30 24	900 900 900 000 000		1959 1951 1954 1960 1950			23 47 12 12 12
F4 1215 F4 1215-15 F2 1316 F0 1446 F3 1606	BURNT RANCH 1S BURNT RANCH HMS CALLAHAN RANGER STA CAMP SIX LOOKOUT CECILVILLE 5 SE	2150 1500 3136 3700 2980	SEC 23 SEC 14 SEC 21 SEC 31 SEC 12	T05N T05N T40N T17N T37N	ROGE ROGE ROSW ROSE RLIW	E H 40 F H 40 M 41 B M 41 M 41	47 48 18 49 06	48 123 30 123 00 122 48 123 00 123	28 28 48 52 03	48 30 00 24 00	900 000 900 000 900		1945 1963 1943 1963 1954			53 53 47 08 47
F3 1799 F4 1886 F3 1990 F6 2081 F6 2084	CLEAR CREEK COFFEE CREEK RS COPCO DAM NO 1 COVELO COVELO EEL RIVER RS	975 2500 2700 1385 1514	SEC 07 SEC 06 SEC 29 SEC 12 SEC 28	T15N T37N T48N T22N T23N	RO7E RO7W RO4W RL3W RL1W	H H 41 M 41 P M 41 M 39 M 39	42 05 59 47 50	30 123 122 00 122 00 123 00 123	26 42 20 15 05	54 00 00 00	900 900 900 900 900		1959 1960 1928 1921 1940			47 53 47 23 23
FO 2147 FO 2148 FO 2150 FO 2152 F1 2188	CRESCENT CITY 1 N CRESCENT CITY 7 ENE CRESCENT CITY HMS CRESCENT CITY 11 E CROWDER FLAT	40 120 50 360 5175	SEC 20 SEC 08 SEC 20 SEC 30 SEC 20	TIGN TIGN TIGN TIGN T47N	ROLW ROLE ROLW RO2E RLLE	H 41 H 41 H 41 B H 41 K M 41	46 48 46 45 53	00 124 00 124 00 124 18 123 00 120	12 05 12 59 44	00 00 00 30 00	900 900 900 000 000	PN2188	1885 1913 1941 1947 1958			08 08 08 08 25
F6 2218 F1 2480 F0 2749 F2 2899 F6 2910	CUMMINGS DORRIS INSPECT STA ELK VALLEY ETNA EUREKA WB CITY	1270 4240 1711 2912 43	SEC 21 SEC 36 SEC 34 SEC 28 SEC 22	T23N T48N T19N T42N T05N	RIGW ROIW RO4E RO9W ROIW	M 39 R M 41 H 42 M 41 H 40	50 57 00 28 48	00 123 18 121 00 123 00 122 124	38 54 43 54 10	00 30 00 00	900 000 900 900 900		1927 1959 1938 1935 1878			23 47 08 47 12
F7 3025 F6 3030 F5 3041 F3 3122 F4 3130	FERNDALE 8 SSW FERNDALE 2NW FIELDBROOK 4 D RCH FOOTHILL SCHOOL FOREST GLEN	1445 10 285 2960 2340	SEC 06 SEC 34 SEC 36 SEC 25 SEC 22	TOLN TO3N TO7N T46N TO1S	RO2W RO2W RO1E RO5W RO8E	P H 40 K H 40 P H 40 F M 41 H 40	29 35 56 48 23	30 124 54 124 36 124 42 122 00 123	20 16 01 22 20	24 36 06 18 00	900 900 000 000 900		1959 1963 1956 1962 1930			12 12 12 47 53
F3 3151 F0 3173 F2 3176 F2 3182 F6 3194	FORKS OF SALMON FORT DICK FORT JONES 6 ESE FORT JONES RANGER STA FORTUNA	1270 46 3324 2720 60	SEC 24 SEC 14 SEC 12 SEC 02 SEC 35	T10N T17N T43N T43N T03N	RO7E RO1W RO8W RO9W RO1W	A H 41 H 41 M 41 C M 41 Q H 40	15 52 35 36 36	12 123 00 124 00 122 00 122 00 122 00 124	19 09 43 51 09	00 00 00 00 00	900 900 900 900 900		1959 1951 1941 1936 1955			47 08 47 47 12
F6 3320 F6 3322-01 F0 3357 F2 3361-03 F2 3363	GARBERVILLE GARBERVILLE HMS GASQUET RANGER STA GAZELLE - EPPERSON GAZELLE LOOKOUT	340 540 384 2760 5200	SEC 24 SEC 24 SEC 21 SEC 17 SEC 08	TO4S TO4S T17N T43N T41N	RO3E RO3E RO2E RO6W RO7W	H 40 G H 40 N H 41 J M 41 J M 41	06 06 52 34 24	00 123 00 123 00 123 18 122 30 122	48 47 58 33 40	00 40 00 12 30	900 809 900 000 000		1938 1935 1940 1950 1956			12 12 08 47 47
F1 3564 F2 3614 F6 3647 F3 3761 F6 3785	GRASS LAKE HMS GREENVIEW GRIZZLY CRK REDWOOD HAPPY CAMP RANGER STA HARRIS 7 SSE	5080 2818 500 1090 1910	SEC 28 SEC 29 SEC 11 SEC 11 SEC 27	T44N T43N T01N T16N T05S	RO3W RO9W RO2E RO7E RO5E	G M 41 M 41 H 40 H 41 N H 39	37 33 29 48 59	48 122 00 122 00 123 00 123 24 123	11 54 47 23 36	30 00 00 00 42	900 900 900 900 900		1954 1943 1963 1914 1953	1967		47 47 12 47 23
F6 3810 F4 3859 F4 3949 F6 3956 F3 3987	HARTSOOK INN HAYFORK RANGER STA HIDDEN VALLEY RANCH HIGH ROCK HILTS	470 2340 1978 900 2900	SEC 24 SEC 12 SEC 32 SEC 15 SEC 23	T05S T31N T01N T01S T48N	RO3E RL2W RO7E RO2E RO7W	D H 40 R M 40 M H 40 K H 40 M 42	00 33 24 22 00	48 123 00 123 54 123 48 123 00 122	47 10 24 56 38	30 00 30 30 00	000 900 000 808 900		1957 1915 1959 1960 1939	1967		12 53 53 12 47
F7 4074 F7 4074-01 F5 4077 F4 4082 F4 4084	HONEYDEW 2 WSW HONEYDEW HUNTER HONOR CAMP 42 HOOPA HOOPA 2 SE	380 380 1875 350 315	SEC 02 SEC 02 SEC 31 SEC 25 SEC 31	TO3S TO3S TO7N TO8N TO8N	RO1W RO1W RO3E RO4E RO5E	С H 40 М H 40 К H 40 Н 41 Н 41	14 14 56 03 02	18 124 18 124 48 123 00 123 00 123	09 09 52 40 39	00 06 42 00 00	900 000 000 900 900		1953 1955 1956 1941 1954			12 12 12 12 12
F4 4191 F0 4202 F3 4577 F6 4587 F5 4602	HYAMPOM IDLEWILD HMS KLAMATH KNEELAND 10 SSE KORBEL	1260 1250 25 2356 150	SEC 25 SEC 06 SEC 15 SEC 13 SEC 28	TO3N T17N T13N TO3N TO6N	ROGE RO4E RO1E RO2E RO2E	H 40 D H 41 H 41 H 40 P H 40	37 54 31 38 52	00 123 00 123 00 124 00 123 00 123	28 46 02 54 57	00 12 00 00 30	900 900 900 900 900		1940 1946 1941 1954 1937			53 08 08 12 12

TABLE A-I (Continued) INDEX OF CLIMATOLOGICAL STATIONS FOR 1967-68 NORTH COASTAL AREA

0.0	Station	otion -eet)	ion	ship	ge	e Tract Meridian	tude		itude		rator iber	rator's lex iber	sord gon	cord ded	Missing	, Code
Number	Nome	Elev (In F	Sect	Town	Rar	40-Acr Bose B	- Loti	11 0	- Long	11	Coope Num	Cooper Ind Nurr	Rec Bei	En	Years P	County
F6 4690 F6 4698 F1 4838 F6 4851 F5 4982	LAKE MOUNTAIN LAKE PILLSBURY NO 2 LAVA BEDS NAT MON LAYTONVILLE LITTLE RIVER	1740 4770 1640 150	SEC 21 SEC 10 SEC 28 SEC 01 SEC 31	T05S T18N T45N T21N T08N	RO7E RIOW RO4E RI5W RO1E	H 40 M 39 H M 41 M 39 P H 41	01 25 43 42 01	00 123 122 48 121 00 123 54 124	24 59 30 29 06	00 30 00 36	900 900 900 900 900		1939 1964 1940 1940 1949		06	53 17 47 23 12
F2 4984-02 F1 5081-01 F5 5244 F1 5505 F6 5676	LITTLE SHASTA LONG BELL STATION MAD RIVER RANGER STA MEDICINE LAKE MINA 3 NW	2725 4375 2775 6660 2875	SEC 26 SEC 20 SEC 17 SEC 10 SEC 28	T45N T42N T01N T43N T05S	RO5W RO5E RO6E RO3E RO7E	C M 41 B M 41 H 40 M 41 A H 40	43 28 27 35 00	00 122 00 121 00 123 00 121 06 123	23 25 32 37 23	00 00 00 30	000 000 900 900 000		1960 1958 1943 1946 1927			47 25 53 47 53
F6 5711 F2 5783 F2 5785 F1 5941 F4 6032	MIRANDA 4 SE MONTAGUE MONTAGUE 3NE MOUNT HEBRON R S MUMBO BASIN	263 2500 2640 4250 5700	SEC 30 SEC 27 SEC 18 SEC 32 SEC 35	T03S T45N T45N T46N T39N	RO4E RO6W RO5W RO1W RO6W	H 40 Q M 41 M 41 M 41 E M 41	11 43 45 47 12	00 123 42 122 00 122 00 122 00 122	47 31 28 00 32	00 36 00 00	900 000 900 900 900	045783	1964 1888 1948 1942 1946		05	12 47 47 47 53
F6 6050 F3 6328 F6 6408 F5 6497-01 F5 6497-02	MYERS FLAT OAK KNOLL RANGER STA OLD HARRIS ORICK 3 NNE ORICK ARCATA REDWOOD	190 1963 2225 50 75	SEC 30 SEC 12 SEC 30 SEC 22 SEC 22	TO2S T46N TO4S T11N T11N	RO3E RO9W RO5E RO1E RO1E	H 40 M 41 G H 40 K H 41 K H 41	15 50 05 19 19	40 123 00 122 00 123 24 124 24 124	52 51 39 02 02	00 00 42 30 36	000 900 000 000 000		1950 1942 1956 1950 1954			12 47 12 12 12
F5 6498 F3 6508 F5 6745 F7 6835-01 F7 6835-02	ORICK PRAIRIE CREEK ORLEANS PATRICKS PT ST PARK PETROLIA PETROLIA 4 NW	161 403 250 175 900	SEC 02 SEC 31 SEC 26 SEC 03 SEC 19	TIIN TIIN TO9N TO2S TOIS	ROLE ROGE ROLW RO2W RO2W	H 41 H 41 L H 41 L H 40 D H 40	22 18 08 19 22	00 124 00 123 12 124 30 124 24 124	01 32 09 16 18	00 00 00 48 30	900 900 804 000 000		1937 1885 1947 1958 1953			12 12 12 12 12
F6 6851-15 F6 6976 F6 7404 F4 7698 F3 8025	PHILLIPSVILLE 1SE PLASKETT RICHARDSON GROVE SALYER RANGER STA SAWYERS BAR R S	300 6580 500 623 2169	SEC 19 SEC 27 SEC 13 SEC 14 SEC 20	TO3S T22N TO5S TO6N T40N	RO4E RO9W RO3E RO5E R11W	B M 40 A M 39 H 40 H 40 M 41	11 44 02 53 18	42 123 12 122 123 00 123 00 123	46 51 47 35 08	00 24 00 00	000 000 900 900 900		1963 1960 1961 1931 1931			12 11 12 53 47
F6 8045 F3 8083-01 F7 8162 F6 8163 F0 8311-01	SCOTIA SEIAD VALLEY R S SHELTER COVE SHERWOOD VALLEY SMITH RIVER 2 WNW	139 1371 55 2170 195	SEC 07 SEC 11 SEC 16 SEC 32 SEC 21	TOLN T46N T05S T20N T18N	ROLE RL2W ROLE RL4W ROLW	H 40 R M 41 H 40 F M 39 A H 41	29 50 02 32 56	00 124 36 123 124 36 123 30 124	06 11 04 26 10	00 42 30 42	900 905 900 901 000		1926 1953 1959 1958 1951			12 47 12 23 08
F3 8346 F3 8346-05 F6 8490 F6 8668 F4 9024	SOMESBAR 1W SOMESBAR UKONOM R S STANDISH HICKEY PARK SUNNY BRAE TRINITY DAM VISTA PT	520 727 850 70 2500	SEC 04 SEC 33 SEC 03 SEC 33 SEC 16	TIIN TI2N T23N T06N T34N	ROGE ROGE R17W ROLE RO8W	H 41 H 41 F M 39 H 40 M 40	23 23 52 52 48	00 123 00 123 30 123 00 124 00 122	29 28 43 04 46	00 00 30 00	900 905 900 000 900	PN8919	1954 1965 1949 1965 1959	1967		12 12 23 12 53
F1 9053 F1 9057 F7 9177 F4 9490 F2 9499	TULELAKE TULELAKE INSP STN UPPER MATTOLE WEAVERVILLE RANGER S WEED FD	4035 4408 255 2050 3593	SEC 06 SEC 31 SEC 33 SEC 12 SEC 01	T47N T44N T02S T33N T41N	ROJE ROJE ROLW RLOW ROJW	M 41 F M 41 H 40 M 40 M 40 M M 41	58 36 15 44 26	00 121 121 00 124 00 122 00 122	28 12 11 56 23	00 00 00 00	900 000 900 900 900	049057	1932 1953 1886 1869 1957			47 25 12 53 47
F6 9527 F7 9654 F6 9684 F6 9685 F6 9686	WEOTT 2SE WHITETHORN WILLITS 1 NE WILLITS HOWARD RS WILLITS NW PAC RR	600 1050 1350 1925 1365	SEC 12 SEC 15 SEC 17 SEC 05 SEC 18	T025 T055 T18N T17N T18N	RO2E RO2E RL3W RL3W RL3W	H H 40 E M 40 M 39 M 39 L M 39	18 01 25 21 24	29 123 18 123 00 123 00 123 12 123	53 56 21 19 21	40 12 00 06	000 000 900 900 006		1961 1962 1950 1935 1911		05	12 12 23 23 23
F2 9866 F6 9940	YREKA ZENIA 1 SSE	2631 2880	SEC 27 SEC 22	T45N T03S	ro7w ro6e	M 41 G H 40	43 11	00 122 18 123	38 28	00 54	900 000		1871 1950			47 53

TABLE A-2 PRECIPITATION DATA NORTH COASTAL AREA

	Precipitation in Inches																
Station Name	Tatal July I			190	57							1968					Tatal Oct.1
- 112	To June 30	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	To Sept.30
RTH COASTAL AREA			1														
TTH RIVER			1.														
CRESCENT CITY 1 N CRESCENT CITY 7 ENE CRESCENT CITY H.M.S. CRESCENT CITY 11 E ELK VALLEY	49.00 59.87 75.53 58.34	.00 .00 .00 .00	.01 .00 0 .00	1.61 1.30 1.38 1.19 .84	4.82 6.29 4.74 6.62 7.26	5.88 6.12 5.53 7.85 5.02	5.56 6.39 5.56 11.74 9.12	11.64 14.77 19.80 15.42	8.12 10.06 12.19 9.16	6.15 9.29 9.77 7.55	.76 .95 .62 1.28 .75	3.81 4.12 4.83 3.14	.64 .58 .54 .26 .08	.40 .14 .32 .11 .03	5.30 4.75 4.71 3.72	1.05 1.41 1.88 1.15	54.13 64.87 81.04 62.40
FORT DICK 1 NME CASQUET RANGER STATION IDLEWILD H.M.S. SWITH RIVER 2 WNW	60.61 68.17 61.64 57.26	.00 .00 .30 .00	T .03 .00 T	1.64 1.06 1.41 1.64	6.97 7.21 6.59 6.41	6.07 6.70 5.29 6.01	6.97 9.58 10.37 7.33	14.80 17.06 15.28 13.62	10.14 10.94 9.29 9.97	8.35 9.85 7.97 6.53	1.06 .91 1.15 1.12	3.89 4.52 3.88 3.93	.72 .31 .11 .70	.45 .09 .06 .45	6.05 4.18 3.44 6.72	1.19 1.57 1.32 1.85	66.66 72.92 64.75 64.64
ST RIVER - BUTTE VALLEY			1.1				2									-	
DORRIS INSPECTION STA GRASS LAKE H.M.S. LAVA BEDS NAT'L MON MOUNT HEBRON RANCER STA TULELAKE	6.81 8.48 7.54 6.30	.11 T .09 .01 .03	T .03 .00 .00	.15 .23 .10 .16 .02	.81 .88 1.00 .88 .40	.37 .61 .70 .26 .12	1.04 RE .79 1.20 .59	.90 1.24 1.32 .43	1.19 .69 .88 1.05	.40 .73 .41 .29	.10 .20 .19 .10	1.23 2.08 1.40 1.85	.51 .83 .83 1.42	.01 02 0	1.61 2.33 1.25 1.98	.19 .11 .08 .16	8.36 10.72 8.70 8.39
TULELAKE INSPECTION STA	9.25	.00	T	T	•79	.47	1.36	2.28	•73	.70	.12	2.17	.63	0	•73	.01	9.99
ASTA-SCOTT VALLEYS	E E6	~	00		c),	20	7).		72	78	hs	78	75	12	1.55	0	7 04
EIG SPRINGS 4 E CALLAHAN RANGER STA ETNA FORT JONES 6 ESE FORT JONES RANGER STA	15.04 14.13 18.92	.00 .09 .02 .05 .35	.00 .09 .03 .04 .33	.00 .21 .15 .19 .17	2.70 2.36 1.51 1.62	.52 1.19 1.32 1.29 1.51	2.48 4.63 3.05 5.43	2.61 3.06 4.23	2.44 4.44 2.79 3.16	1.50 1.70 .97 1.28	.16 .10 .06 .07	.10 .67 .29 .27 .24	. 72 .90 .54 .85 .53	.23 .04 0	.74 .83 .67	.23 .22 .10 .13	15.85
CAZELLE EPPERSON GREENVIEW LITTLE SHASTA MONTAGUE MONTAGUE 3 NE	16.93 7.65 8.10	.00 .00 .00	2.86 .00 .00 .00 0	.03 .08 .35 .22 .23	1.66 .85 1.67 1.19	1.58 .40 .65 .60	3.67 .95 1.57 1.73	3.73 1.23 1.71	2.90 1.40 .59 1.25	1.60 .82 .59 .75	.25 0 .15 .18 .14	.67 .21 .90 .45 .62	.65 1.50 .60 .47 .50	0 .07 0 .01 0	.57 .92 1.09 .81	.05 .10 .21	17.54 8.32 9.19
WEED FIRE DEPARTMENT YREKA AMATH RIVER	14.26 13.68	.00 .04	.03 T	.45 .40	1.77 1.47	1.25 1.17	2.42 3.83	3.05 2.70	.82 2.17	1.89 .98	.04 .12	1.02 .27	1.52 .53	.02	1.47 1.73	.15 .14	15.40 15.13
CECILVILLE 5 SE CLEAR CREEK COPCO DAM NO. 1 POOTHILL SCHOOL FORKS OF SALMON HAFFY CAMP RANGER STA HILTS HIAMATH OKK KNOLL RANGER STA ORLEARS	30.42 49.53 12.44 9.45 40.18 43.46 16.16 56.88 20.32 39.54	.07 .00 T .00 .00 .00 .00 .00 .00	.43 .00 .00 .00 .00 .04 .00 .11 .00	.25 .53 .27 .34 .38 1.26 .43 .47	2.68 4.30 1.24 1.09 3.94 3.40 2.04 6.33 2.05 2.26	2.93 4.33 1.19 .58 3.85 3.88 1.09 6.53 1.78 4.74	5.53 9.03 2.64 1.21 7.48 8.02 4.44 5.56 5.49 7.20	6.49 13.47 1.93 1.48 10.59 12.50 3.07 14.37 3.70 10.26	6.10 8.89 2.07 1.76 7.11 7.62 2.73 8.81 3.70 6.91	2.62 6.20 1.43 1.00 3.98 5.19 1.58 7.64 1.94 4.84	.50 .44 .50 .48 .62 .55 .08 1.17 .20 .44	2.03 2.22 .94 1.24 1.24 1.24 1.74 .67 4.79 .69 2.32	.79 .12 .35 .64 .13 .14 .04 .42 .23 .10	.30 0 H 0 0 0 0 20 0 0	2.90 2.99 1.17 1.17 1.68 2.66 1.08 5.50 .97 3.46	.44 .62 .17 .06 .28 .39 1.50 .37 .60	33.31 52.61 13.51 10.41 40.02 18.21 62.82 21.12 43.13
SAWYERS BAR RANGER STA SEIAD VALLEY R S SOMESBAR 1 W SOMESBAR-UNKONOM R S	34.29 33.87 47.19	.00 .00 .00	.07 .02 .03 .06	•38 •25 •37 •39	3.25 2.96 4.53 4.90	3.14 2.75 RE 4.71	6.64 7.97 7.88	7.88 8.40 11.94	8.25 6.00 8.92	2.95 3.83 5.04	.28 .19 .39	1.12 1.45 2.78	.33 .05 .18	0 0 0	2.20 2.21 3.33	.43 .49 .58	36.45 36.30 50.65
LINITY RIVER			-0										-0				
BIG EAR RANCER STATION BURNT RANCH 1 S BURNT RANCH H.M.S. COFFEE CREEK R S FOREST GLEN	31.71 41.83 32.84 53.00 53.02	.00 .00 .00 .60	.04 .00 .60	.20 .43 .38 .10 .29	2.25 2.15 2.60 .64	3.04 7.14 3.35 5.70 5.58	0.30 7.50 6.42 9.30 10.80	8.40 11.08 8.47 16.10 16.61	0.07 7.46 6.87 9.60 10.59	4.53 4.03 4.50 6.48	.15 .40 .37 .20 .42	1.07 .85 .69 2.90 1.53	.00 .15 .11 .80 .08	00000	2.30 2.30 2.50	.29 .33 .35 .24	32.00 43.99 35.11 55.47
HAYFORK RANGER STATION HIDDEN VALLEY RANCH BOOPA BOOPA 2 SB HYAMPOM	31.93 44.35	.00 .00 .00 .00 .05	.22 .00 .00 T .05	.20 .29 .45 .44 .20	1.71 3.71 4.13 4.10 2.05	3.20 RE 4.80 3.49	5.66 8.27 6.97	10.95 10.97 	6.41 7.49 7.48	3.02 4.78	.03 .52 .15	.48 2.32 1.33	.05 .62 .08	T .02 T O	1.01 3.61 3.65 2.18	.16 .39 .40 .33	32.68 47.92
SALYER RANGER STATION TRINITY DAM VISTA PT WEAVERVILLE R S D RIVER	36.87 34.00 35.49	.00 .08 .40	.03 .15 .43	.47 .18 .22	2.60 2.68 2.16	3.78 2.74 3.18	7.33 6.75 6.72	10.92 9.06 10.73	6.86 8.15 8.05	3.66 2.23 2.54	.36 .05 .09	.72 1.75 .97	.14 .18 T	0 0	3.19 1.44 1.08	•35 .18 .18	39.91 35.21 35.70
ARCATA AIRPORT BIG LAGOON BLUE LAKE FIELDEROOK 4D RANCH BONOR CAMP 42	37.01 43.06 34.08 52.00 54.86	.01 .00 .00 .00	.05 .00 .00 .00	.89 1.02 .68 1.30 .88	3.21 4.08 3.65 4.80 5.51	5.07 5.46 4.92 9.45 6.71	5.44 6.93 5.22 8.90 9.36	9.68 11.78 8.83 12.85 11.75	4.37 5.67 4.09 5.35 7.88	4.78 7.08 4.15 5.20 6.86	.48 .48 .44 .65 1.64	2.71 2.96 2.03 3.05 3.61	.32 .57 .07 .45 .66	.15 .09 .13 .10 .17	3.46 4.42 2.93 5.10 6.02	.84 .88 .89 1.10 1.26	40.51 50.40 37.35 57.00 61.45
KORBEL LITTLE RIVER MAD RIVER RANGER STA ORICK 3 NNE ORICK ARCATA REDWOOD	38.28 37.34 51.51 45.89 46.19	.00 T .00 .00	.00 T T 0 .00	.76 2.35 .40 1.04 1.35	3.88 3.34 4.51 4.87 4.06	5.84 5.80 4.72 5.53 5.46	7.56 5.05 9.84 6.46 6.08	8.88 7.80 14.12 12.42 12.50	4.51 3.30 8.71 4.84 6.44	4.45 5.60 7.13 6.11 5.97	.44 .40 .28 .69 .56	1.96 2.95 1.70 3.33 3.33	0 .75 .10 .60 .44	.09 RE 0 .14 .13	3.26 2.46 5.64 5.35	.94 .32 1.15 1.06	41.81 53.89 51.78 51.38
ORICK PRAIRIE CRK PK PATRICKS PT STATE PK	48.89 44 .0 6	т .00	.00. .00	1.23 1.56	4.91 3.57	5.12 5.60	6.53 6.28	12.82 11.17	6.43 5.26	6.90 6.42	.88 .71	3.53 2.75	.54 .74	.17 .18	5.67 4.53	1.01 1.09	54.51 49.31

TABLE A-2 (Continued) PRECIPITATION DATA NORTH COASTAL AREA

	Precipitation le Inches																
Station Nome	Total Juty 1			19	67							1968					Tata1 Oct.I
	To June 30	July	Aug.	Sept.	Oct.	Nov.	Oec.	Jan.	Feb.	Mar.	Apr.	Moy	June	July	Aug.	Sept.	To Sept.3
NORTH COASTAL AREA	10																
ADAMAC LODGE	60,88	.00	.00	.40	5,86	6.33	11.25	17.29	9.54	7.30	.37	2.43	.17	00	5 10	ho	65.0
ALDERPOINT BRANSCOMB 2 NW BRIDGEVILLE & NNW BULL CREEK	44.52 63.40 49.41 59.00	00. 00. 00.	Т Т .00 .00	.51 .30 .84 .62	3.72 6.18 4.54 4.60	4.97 6.74 6.10 5.91	3.31 12.50 7.12 10.84	12.13 16.33 12.13 18.84	7.41 10.03 8.00 7.80	5.59 8.31 7.58 8.56	.39 .30 .67 .22	1.47 2.63 2.43 1.61	.02 .08 0 0	T 0 .07 T	4.22 4.07 3.91	.23 .57 .85 .26	53.1
BURLINGTON STATE PK COVELO COVELO EEL RIVER R S CUMMINGS EUREKA W B CITY	54.68 35.14 32.87 61.48 28.22	00. 00. 00.00	.00 .00 0 T T	.67 .35 .30 .30 1.32	3.74 2.44 2.28 5.80 2.15	5.59 3.19 3.57 6.14 4.40	9.10 6.89 6.38 11.21 4.34	17.97 10.68 9.33 17.42 7.59	7.38 6.03 5.77 9.92 2.93	8.10 4.33 3.94 7.98 3.85	.11 .09 .08 .40 .40	2.01 1.10 1.22 2.23 1.04	.01 .04 0 .08 .20	0 0 0 .04	4.26 4.61 1.98	.18 .08 .46 .60	39 66.2 29.5
FERNDALE 2 NW FORTUNA GARBERVILLE GARBERVILLE H.M.S. GRIZZLY CRK REDWOOD	31.64 32.87 46.66 53.76 43.14	.02 .00 .00 .00 T	.06 .00 .00 0 0	1.84 .86 .37 .42 .50	2.29 2.91 3.53 3.47 3.36	4.77 5.24 5.11 5.28 5.25	4.66 5.00 8.03 9.74 7.88	9.32 9.15 14.18 16.84 12.52	2.98 3.79 8.34 9.80 4.46	4.10 4.24 5.57 5.99 7.04	.62 .42 .01 .23 .57	.81 1.04 1.52 1.79 1.40	.17 .22 T .20 .16	.22 0 0 0 T	2.11 2.26 1.89 2.06 2.85	•35 •33 •16 •50 •57	34 34 43 55.9 46.0
EARRIS 7 SSE EARTSOOK INN HIGH ROCK KMEELAND 10 SSE IAKE MOUNTAIN	54.77 46.89 42.53	0 .00 .01 0 0	.30 .00 .00 0 .02	0 .45 .49 .57 .53	5.47 2.94 3.10 3.90 3.77	3.48 5.79 5.03 5.47 5.55	11.11 11.98 8.62 8.25 7.67	16.44 18.75 14.79 9.96	7.93 10.69 5.79 5.88	7.27 7.77 7.49 6.06 5.72	.36 .52 .35 .70 .17	2.41 1.12 1.68 2.09	0 .10 .06 .05	 0 .03 0	2.47 3.81 3.47	.21 .72 .61	9. 26.5
LAKE FILLSBURY NO. 2 LAYTONVILLE MINA 3 NW MYERS FLAT OLD HARRIS	40.58 48.48 46.59 51.31 55.67	.00 0 0 .00	.00 0 0 .00 .01	.06 .16 1.16 .57 .90	2.80 3.89 3.77 4.34 5.41	3.78 4.77 4.44 5.38 5.11	7.16 10.59 7.76 8.67 9.76	13.26 12.77 11.65 16.60 14.11	7.79 8.97 9.06 7.48 10.09	4 .70 5.59 5.63 6.07 6.83	.28 .16 .28 .15 .33	•75 1.53 2.84 2.01 2.98	0 .05 .04 .09	0 0 0 T	2.05 5.30 1.69 3.53	.15 .20 .52 .44	42.7 53. 52., 55.7
PHILLIPSVILLE 1 SE RICHARDSON GROVE SCOTIA SHERWOOD VALLEY STANDISH HICKEY PARK	45.94 58.37 36.67 45.22 61.09	.00 .00 T .00	.00. .00. .00 .00	.47 .37 .85 .23 .68	3.46 4.75 2.75 3.18 5.83	5.65 5.90 4.96 5.63 5.59	7.75 9.60 6.48 8.24 11.13	13.66 17.42 11.39 10.70 17.13	7.84 9.91 3.51 8.32 10.19	5.18 7.85 5.11 6.51 7.79	.22 .41 .32 .39 .29	1.71 2.16 .98 2.01 2.37	0 0 0 9 0 9	0 0 06 0	1.81 2.94 1.53 .62 4.35	.23 .19 .19 2.33 .36	-7.5. 61.1 37. 17.9 65.1
SURNY ERAE WEOTT 2 SE WILLITS 1 NE WILLITS HOWARD R S WILLITS N W PAC R R	33.98 53.25 40.21 41.69	.00 0 .00 0	Т О Т .03 О	1.01 .70 .15 .12 .12	3.52 4.09 3.76 3.48 3.68	4.65 5.39 4.04 5.33 4.09	5.76 9.67 7.02 6.99 7.40	8.97 13.52 10.75 12.15	3.46 6.68 7.07 7.25	3.97 6.75 5.86 5.41 5.09	-46 .16 .18 .36 .56	1.83 1.29 1.3 ³ 1.67 1.35	•35 0 0 0	.10 0 0 0	3.07 1.86 2.11 1.33 1.66	.81 .18 .21 .21 .36	36.9 54.5 42.3
ZENIA 1 SSE	54.71	.00	.00	.00	5.09	4.17	7.00	14.31	8.86	10.59	1.68	2.64	.41	0	2.75	.64	58.1.
FERMIDALE 8 SSW HONEYDEW 2 WSW HONEYDEW HUNTER PETROLIA PETROLIA NW	37-39 82.32 85.52 49.52 37.46	.00 .00 .00	.00 .06 .00	1.33 .50 .61 .71	2.70 6.30 5.06 4.04	4.57 8.70 8.95 6.53 6.11	5.66 12.20 12.02 7.99 5.61	9.56 28.60 29.12 16.23	5.05 11.25 16.19 5.29	5.45 11.57 10.93 6.52	1.01 .39 .37 .51	1.80 2.68 2.24 1.58	.26 .07 .03 .12	.36 T 0 .10	1.87 4.67 4.49 3.75	-38 -31 -29 -49	38.6° 56.4 89.6 53.1
SHELTER COVE UPPER MATTOLE WHITETHORY	45.96 58.80 67.36	.00 .00 .00	.02 .00 .00	.70 .57 1.16	4.70 5.22 5.09	7.00 7.52 8.68	4.96 8.46 8.93	10.42 18.13 18.85	11.37 8.03 12.97	3.75 8.03 8.04	.23 .38 .56	2.78 2.42 3.08	.03 .04 0	H O O	3.30 3.94 3.30	-53 -33 0	49.0 62.50 69.50
													1				
1																	•
								1			1						
											1						
															1		
														-			

TABLE A-3

STORAGE GAGE PRECIPITATION DATA NORTH COASTAL AREA

			1967-68 s	leason
Station	Measuring Agency	Measure Perio	ement od	Precipitation in Inches
NORTH COASTAL AREA				
SMITH RIVER				10000
Camp Six Lookout	DWR	7-12-67	7-9-68	74.51
LOST RIVER-BUTTE VALLEY				
Bray 10 WSW Crowder Flat Long Bell Station Medicine Lake	DWR DWR DWR DWR	7-12-67 7-12-67 7-13-67 7-13-67	8-20-68 7-17-68 7-18-68 8-20-68	20.37 12.10 23.48 37.91
SHASTA-SCOTT VALLEYS				
Gazelle Lookout	DWR	7-12-67	7- 9-68	15.48
KLAMATH RIVER				
Beswick 7S Blue Creek Mountain	DWR DWR	7 -12- 67 8-30-67	8 -20-6 8 8- 6-68	31.00 91.48
TRINITY RIVER				1000
Board Camp Mountain Mumbo Basin	DWR DWR	7-10-67 7-13-67	7- 8-68 7-10-68	72.55 49.20
EEL RIVER				125
Plaskett	DWR	7-10-67	8-15-68	50.66

DWR - Department of Water Resources

TABLE A-4 TEMPERATURE DATA

The definition of terms and the abbreviations used in Table A-4

are as follows:

Maximum -	The	highest	temperature	of	record	for	the	month.
			-					

- Minimum The lowest temperature of record for the month.
- Avg Max The arithmetic average of daily maximum temperatures for the month.
- Avg Min The arithmetic average of daily minimum temperatures for the month.

Average - The arithmetic average of the daily maximum and minimum temperatures for the month.

TABLE A-4 TEMPERATURE DATA NORTH COASTAL AREA

					т	EMPERATU	RE IN DEGR	REES FAHRE	NHEIT							
Station Name				19	67			1968								
		July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept
NORTH COASTAL AREA																
LOST RIVER-BUTTE VALLE																
DORRIS INSPECT STA	Maximum Minimum Avg Max Avg Min Average	93 38 85.2 46.5 65.9	94 36 87.7 47.1 67.4	86 31 78.4 41.1 59.8	72 16 62.4 30.2 46.3	62 3 52.8 25.7 39.3	42 -12 34.3 9.6 22.0	50 -6 39.0 16.5 27.8	63 16 51.0 30.0 40.5	66 14 54.9 25.8 40.4	74 10 57.1 25.5 41.3	78 14 66.5 35.3 50.9	92 29 75.5 41.1 58.3	94 38 86.7 47.7 67.2	90 34 76.2 46.4 61.3	85 20 74.0 37.5 56.0
GRASS LAKE HMS	Maximum Minimum Avg Max Avg Min Average	92 40 83.4 46.2 64.8	94 34 85.9 45.1 65.5	86 29 77.8 37.3 57.6	76 18 61.9 29.7 45.8	65 6 53.0 28.2 40.6			RECORD	ENDS				-		
TULELAKE INSPECT STA	Maximum Minimum Avg Max Avg Min Average	95 41 87.7 48.7 68.2	97 41 90.5 49.7 70.1	90 31 81.7 42.7 62.2	77 21 64.7 31.1 47.9	72 13 54.5 27.6 41.1	50 -7 34.1 11.7 22.9	52 -4 38.3 15.6 27.0	64 10 46.6 26.9 36.8	68 12 52.8 26.0 39.4	76 15 58.3 25.7 42.0	78 19 64.6 34.1 49.4	95 34 76.5 41.6 59.0	98 32 87.7 47.0 67.4	95 30 76.5 44.8 60.6	95 24 77.v 39.t 50.t
SHASTA-SCOTT VALLEYS																
MONTAGUE	Maximum Minimum Avg Max Avg Min Average	100 43 92.9 51.8 72.4	104 41 95.5 49.0 72.3	96 36 87.5 40.6 64.1	79 27 68.1 34.0 51.1	72 18 58.8 29.0 43.9	47 7 36.6 22.5 29.6	58 11 41.6 23.3 32.4	70 21 56.9 33.4 45.2	73 18 59•5 34•5 47.0	86 30 64.1 37.6 50.8	84 33 72.0 43.0 57.5	102 39 82.9 46.8 64.8	104 42 94.6 50.7 72.6	97 38 82.5 47.1 64.8	99 28 83.0 42.0 63
KLAMATH RIVER																
COPCO DAM NO 1	Maximum Minimum Avg Max Avg Min Average	108 54 97.5 60.7 79.1	107 52 100.0 61.4 80.7	97 48 91.6 55.4 73.5	83 30 71.6 40.4 56.0	74 24 58.3 35.8 47.1	50 12 39.4 22.0 30.7	59 10 44.5 24.3 34.4	72 26 57.1 36.2 46.6	76 26 62.6 34.1 48.4	87 27 68.3 36.6 52.4	89 30 75.9 43.1 59.5	105 40 86.7 51.3 69.0	108 42 98.5 59.7 79.1	103 43 85.8 55.3 70.6	103 33 87.3 51.3 69-
SEIAD VAILEY R S	Maximum Minimum Avg Max Avg Min Average	109 46 98.7 53.9 76.3	109 47 101.3 53.2 77.3	100 39 92.3 45.5 68.9	85 30 71.2 40.4 55.8			64 19 48.0 28.6 38.3	76 25 60.0 35.0 47.5	77 26 60.9 34.4 47.6	89 26 71.8 34.6 53.2	91 29 75.9 42.2 59.0	108 37 87.9 47.9 67.9	107 48 97.7 53.7 75.7	101 43 87.6 51.3 69.4	102 33 88. 45. 66.

TABLE A-4 (Continued)

TEMPERATURE DATA

NORTH COASTAL AREA

				-	T	EMPERATU	RE IN DEGR	EES FAHRE	NHEIT							
Station Name	1967				67						1968					
		July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mor.	Apr.	May	June	July	Aug.	Sept.
H COASTAL AREA																
RINITY RIVER																
HIDDEN VALLEY RANCH	Maximum Minimum Avg Max Avg Min Average	102 46 95.7 55.6 75.7	104 54 97.8 58.5 78.2	98 48 91.2 51.4 71.3	90 38 71.9 43.7 57.8			RECORD	ENDS			-				
AD RIVER																
BLUE LAKE	Maximum Minimum Avg Max Avg Min Average	78 50 70.4 55.4 62.9	76 51 71.9 54.9 63.4	88 50 73.6 54.9 64.3	81 40 70.2 50.2 60.2	70 32 62.8 45.9 54.4	67 23 54.6 35.9 45.2	75 29 55.2 38.1 46.6	81 36 62.2 46.0 54.1	73 34 62.5 44.2 53.4	79 33 62.4 40.1 52.2	73 35 63.9 47.5 55.2	78 40 69.3 52.3 60.8	75 46 69.8 52.2 61.0	90 48 71.1 56.1 63.6	83 40 70.1 51.1 60.6
FIELDBROOK 4D RANCH	Maximum Minimum Avg Max	78 47 71.2	77 47 72.6	85 47 73•3	79 36 68.5	70 29 60.7	58 20 49.5	64 25 52.0	74 32 59.6	65 32 59.6	76 34 61.5	74 36 63.1	76 43 69.7	78 48 70.5	91 45 70.2	77 35 68.2
	Average	61.2	62.0	62.0	56.8	51.9	40.9	43.4	51.8	50.3	52.0	54.2	59.8	60.8	61.4	58.4
HONOR CAMP 42	Maximum Minimum Avg Max Avg Min Average	42 72.4 48.8 60.6	90 44 78.2 51.8 65.0	94 46 77.9 51.2 64.6	03 40 67.1 46.1 56.6	30 59.7 43.7 51.7	23 49.4 33.4 41.4	25 50.1 34.8 42.4	73 31 59.3 41.1 50.2	29 55.6 36.7 46.2	28 *59.1 35.5 47.3	29 60.9 40.5 50.7	90 36 69.2 46.0 57.6	42 71.9 48.9 60.4	97 42 68.9 49.3 59.1	38 71.6 49.3 60.4
KORBEL	Maximum Minimum Avg Max Avg Min	84 43 75.8 50.3	80 46 77.5 50.3	95 46 78.4 49.2	84 36 73.3 44.7	74 30 63.3 41.6	62 20 51.7 31.5	67 26 54.5 35.1	80 32 63.4 43.9	76 28 64.4 39.5	85 28 64.9 36.8	78 30 67.6 42.9	1111	80 40 75.4 49.4	94 43 75.4 52.4	90 36 75.9 48.0
EL RIVER	Average	03.1	03.9	03.0	59.0	,2.,	41.0	44.0	22.0	71.4	50.0	77.4	_	02.4	03.9	02.0
BULL CREEK	Maximum			-	76	68		58	66	-	-		99	99		
	Minimum Avg Max Avg Min Average			=	32 66.7 41.7 54.2	27 58.4 39.4 48.9	=	24 46.2 31.3 38.8	36 56.5 42.0 49.3	-			38 82.3 46.9 64.6	46 86.2 50.9 68.5		
BURLINGTON STATE PK	Maximum Minimum Avg Max Avg Min Average		1111	94 50 83.4 53.6 68.5	77 40 70.4 46.2 58.3	74 34 63.3 44.5 53.9	60 23 50.9 35.4 43.2	64 31 53.6 37.0 45.3	70 38 60.8 46.1 53.5	71 35 64.1 42.3 53.2	86 34 65.6 42.9 54.3	84 38 73.0 46.7 59.9	94 42 80.6 52.1 66.4	96 52 84.6 54.7 69.6	1111	91 42 80.6 52.2 66.4
GARBERVILLE HMS	Maximum Minimum Avg Max Avg Min Average	104 50 91.5 54.7 73.1	108 46 97.3 54.1 75.7	105 40 96.5 50.5 73.4	103 34 89.3 46.2 67.8	80 34 67.1 44.0 55.6	64 18 53.6 30.9 42.2	65 20 54.9 33.9 44.4	77 34 64.7 44.0 54.4	80 32 69.1 39.0 54.0	90 30 72.7 39.8 56.2	90 37 77.5 45.6 61.5	104 36 86.2 48.7 67.4	106 44 90.4 52.2 71.3	104 40 87.4 47.6 67.5	103 43 89.6 50.9 70.2
GRIZZLY CRK REDWOOD	Maximum Minimum Avg Max Avg Min Average	90 49 74.5 51.9 63.2	90 45 79.8 51.2 65.1	96 44 78.7 50.7 64.7	87 35 71.8 44.1 58.0	76 30 63.1 43.5 53.3	60 19 50.7 32.2 41.4	68 25 52.5 34.2 43.4	77 33 62.2 43.3 52.8	74 29 62.9 40.0 51.4	87 28 64.0 39.0 51.5	81 33 66.9 45.4 56.2	87 38 73.6 48.5 61.0	86 40 75.4 50.1 62.8	101 47 74.4 52.3 63.4	94 38 76.1 49.4 62.8
HOLMES	Maximum Minimum Avg Max Avg Min Average	91 50 76.0 54.3 65.2	88 50 80.2 53.9 67.1	94 47 79.6 53.8 66.7				RECORD	ENDS						- 1	
OLD HARRIS	Maximum Minimum Avg Max Avg Min Average	98 40 83.3 48.7 66.0	100 41 89.9 57.0 73.5	100 40 83.5 50.0 66.8	80 37 66.3 44.3	75 28 59.1 39.7 49.4	90 20 59.0 31.8 45.4	78 20 51.4 31.6	84 30 60.5 39.5 50.0	74 24 57.9 34.5 46.2	80 24 60.7 33.0 46.9	74 30 59•3 36•0 47•6	88 32 72.2 42.4 57.3	86 40 74.4 46.1 60.2	85 40 69.6 45.7 57.6	82 34 72.1 47.6 59.8
STANDISH HICKEY PK	Maximum Minimum Avg Max Avg Min	96 48 88.5 52.5	102 45 92.4 52.2	99 42 83.7 50.1	84 36 69.4 43.6	80 31 65.5 41.3	99 21 57.3 31.5	84 29 53.3 33.8	77 32 60.7 42.7	73 29 59.0 38.2	83 31 63.7 38.4	76 34 65.0 41.6	92 37 73.1 48.3	90 38 75.4 51.3	91 47 75.0 52.7	87 40 74.6 48.9
	Average	70.5	72.3	66.9	56.5	53.4	44.4	43.6	51.7	48.6	51.0	53-3	60.7	63.4	63.8	61.8

.

TABLE A-5 EVAPORATION DATA

The definition of terms and the abbreviations used in Table A-5

are as follows:

- The total amount of water evaporated from the Evap pan in inches for the month.
- The amount of movement of air over the pan in Wind miles for the month.
- Avg Max The arithmetic average of daily maximum water temperatures in degrees Fahrenheit for the month.
- Avg Min The arithmetic average of daily minimum water temperatures in degrees Fahrenheit for the month.

		Evaporation in Inches							Wind in Totol Miles						Water Temperature in Degrees Fahrenheit						
Station Name		Total July I		1967						1968								Tot Oc			
		To June 30	July	Aug.	Sept.	Oct.	Nav.	Dec.	Jos.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Tc Sep			
NORTH COASTAL AREA LOST RIVER-BUTTE VALLEY																- 1					
TULEIAKE	Evap Wind Avg Max Avg Min		9.64	9.05	7.10	3-33						6.22 ^b	7.03	9.01	10.37	7.07	6.61				
KLAMATE RIVER																					
SEIAD VALLEY RANGER S	Evap Wind Avg Max Avg Min		9.22	8.06	5-37										9.09	4.08	4.24				
TRINITY RIVER															_						
TRINITY DAN VISEA PT	Evap Wind Avg Max Avg Min		10.65 1237	10.09 1242	6.45 2086	2.45 984	0.77 774				2.27 986	5,53 1342 ⁵	6.03 1107	8.94 1211	10.76 1179	7.02 1201	6.11 1062				
EEL, RIVER																0.00					
FERNDALE 2 WW	Evep Wind Avg Max Avg Min	 	4.38 893 80.1 57.9	3.85 760 79.0 57.4	3.55 610 80.2 57.6	2.31 794 71.0 51.6	1.19 729 61.7 47.7	1.00 1337 50.7 39.2	1.02 1364 53.0 40.7	1.13 966 62.4 48.6	2.58 1125 67.2 46.6	3.77 997 71.4 48.2	4.06 1077 75.9 51.3	4.59 977 82.7 55.2	4.27 885 79.2 57.2	3.89 790 79.8 58.3	3.11 591 76.4 55.1				
LAKE PILLSBURY NO 2	Evap Wind Avg Max Avg Min		10.63 728 94.4 62.5	10.07 532 93.1 61.4	7.29 610 86.0 56.7	2.89 317 72.7 48.6	1.47 230 60.5 45.3	2.17 457 45.0 36.3	0.82 256 46.0 35.2	1.44 341 60.5 43.9	3.06 550 66.5 43.4	6.06 711 76.3 44.8	7.24 725 81.2 51.4	9.63 704 89.2 56.4	11.17 628 92.1 59.9	7.70 602 86.2 53.5	6.97 581 82.6 53.8				
																_					

TABLE A-5 EVAPORATION DATA NORTH COASTAL AREA

b Record partially estimated --- No record or record incomplete

APPENDIX B

SURFACE WATER MEASUREMENTS

.

	•
	•
	•

INTRODUCTION

This appendix presents surface water data for the 1968 water year, the period from October 1, 1967, to September 30, 1968. The data consist of daily mean discharges, gaging station locations, and summary tables of monthly and annual unimpaired runoff from major streams.

Continuous records of stage and flow, together with instantaneous peak flood data are available in the files of the Department of Water Resources.

Each station in this appendix has been assigned an identification number. The letter and first digit denote the drainage basin as shown below. The remaining digits identify each station.

North Coastal Area

FO - Smith	River
------------	-------

- Fl Lost River-Butte Valley
- F2 Shasta-Scott Valleys
- F3 Klamath River
- F4 Trinity River
- F5 Mad River
- F6 Eel River
- F7 Mattole River

INDEX TO GAGING STATIONS

F21300	Little Shasta River near Montague
F41540	Weaver Creek near Douglas City
F42100	North Fork Trinity River near Helena

SURFACE WATER MEASUREMENT STATIONS

TABLE B-1 ANNUAL UNIMPAIRED RUNOFF

Unimpaired runoff is defined as the flow that would occur naturally at a point in a stream if there were: (1) no upstream controls such as dams or reservoirs; (2) no artifical diversions or accretions; and (3) no change in ground water storage resulting from development.
TABLE B-1

ANNUAL UNIMPAIRED RUNOFF

In Percent of Average

Water Year	Klamath River,	Salmon River	Trinity River	Eel River
	Copco To	at	at	at
	Somesbar	Somesbar	Lewiston	Scotia
Average Annual Runoff*	4332	1180	1167	5146
1915-16 1916-17 1917-18 1918-19 1919-20 1920-21 1921-22 1922-23 1923-24			129 56 52 99 35 154 67 59 23	84 44 103 28 152 72 54 17
1924-25 1925-26 1926-27 1927-28 1928-29 1929-30 1930-31 1931-32 1932-33 1933-34	88 58 41 77 83 50	93 50 65 40 89 86 49	128 69 156 91 45 70 34 62 69 59	139 64 153 90 37 68 31 70 71 48
$ \begin{array}{r} 1934 - 35^{\circ} \\ 1935 - 36 \\ 1936 - 37 \\ 1937 - 38 \\ 1938 - 39 \\ 1938 - 39 \\ 1939 - 40 \\ 1940 - 41 \\ 1941 - 42 \\ 1942 - 43 \\ 1942 - 43 \\ 1943 - 44 \end{array} $	83	96	83	99
	92	97	88	112
	75	83	86	69
	183	189	180	209
	59	64	49	52
	104	108	138	142
	103	107	218	160
	107	112	155	144
	137	147	95	111
	63	54	56	44
1944-45	84	96	90	93
1945-46	118	129	121	117
1946-47	60	65	63	51
1947-48	99	105	103	92
1948-49	74	81	94	81
1949-50	94	100	73	80
1950-51	146	152	138	139
1951-52	153	166	156	156
1952-53	149	153	138	139
1953-54	142	136	136	134
1954-55	61	50	63	62
1955-56	191	186	174	198
1956-57	100	100	93	84
1957-58	189	191	231	227
1958-59	79	85	89	80
1959-60	80	80	88	91
1960-61	104	102	104	104
1961-62	75	81	89	77
1962-63	136	145	137	138
1963-64	92	95	68	67
1964-65	165	158	147	183
1965-66	103	94	115	100
1966-67	120	107	142	129
1967-68**	78	80	86	81

Average Unimpaired Runoff in Thousands of Acre-Feet Computed From the 50-Year Period October 1915 Through September 1965.
 ** Preliminary Data Subject to Revision

TABLE B-2

MONTHLY UNIMPAIRED RUNOFF In Percent of Average

Month		Klamath River Copco to Somesbar	Salmon River at Somesbar	Trinity River at Lewiston	Eel River at Scotia
October	Percent*	78	82	90	66
1967	Average**	90	22	21	56
November	Percent*	43	38	47	15
1967	Average**	220	56	47	274
December	Percent*	32	37	41	53
1967	Average**	485	116	91	874
January	Percent*	81	93	109	117
1968	Average**	579	141	94	1042
February	Percent*	184	173	206	118
1968	Average**	595	155	144	1180
March	Percent*	95	107	108	89
1968	Average**	577	157	152	797
April	Percent*	54	53	66	[•] 29
1968	Averag e **	630	180	214	571
May	Percent*	50	53	62	34
1968	Average**	572	186	229 ~	235
June	Percent*	53	52	50	43
1968	Average**	334	108	118	79
July	Percent*	60	46	26	55
1968	Average**	126	35	35	22
August	Percent*	96	107	46	156
1968	Average**	67	14	1 3	9
September	Percent*	11	110	111	114
1968	Average**	57	10	9	7
1967-68		78	80	86	81
Water Year		4332	1180	1167	5146

*

Preliminary Data Subject to Revision. Average Unimpared Runoff in Thousands of Acre-Feet Computed From the 50-Year Period October 1915 Through September 1965. **

TABLE B-3

GAGING STATION ADDITIONS AND DISCONTINUATIONS

ADDITIONAL STATIONS

None

DISCONTINUED STATIONS

Big Creek near Hayfork - 10/1/67 Browns Creek near Douglas City - 10/1/67 Moffett Creek near Fort Jones - 10/1/67 Shasta River near Edgewood - 10/1/67

PUBLICATION DISCONTINUED

None

PUBLISHED DATA FROM PRIOR YEARS

None

TABLE B-4 DAILY MEAN DISCHARGE

The streamflow table is arranged in downstream order for each stream or stream system. Stations on a tributary entering between two main stem stations are listed between those stations, and in downstream order on that tributary. A stream gaging station is named after the stream and the nearest post office (e.g., Weaver Creek near Douglas City).

The discharges estimated for periods of no record or invalid record are shown with the letter "E". Also qualified by the letter "E" are discharges obtained from extended ratings which exceed 140 percent of the highest measured flow-rate on which the rating curve was based.

The discharge figures in this table have been rounded off as follows:

1. Daily flows - Cubic feet per second

0.0	-	9.9	nearest	Tenth
10	-	999	11	Unit
1,000	-	9,999	tt	Ten
10,000	-	99,999	11	Hundred
100,000	-	999,999	11	Thousand

2. Monthly means - Cubic feet per second

0.0	-	99.9	nearest	Tenth
100	-	9,999	11	Unit
10,000	-	99,999	11	Ten
100,000	-	999,999	11	Hundred

3. Yearly totals - acre-feet

0.0	-	9,999	nearest	Unit
10,000	-	99,999	11	Ten
100,000	-	999,999	11	Hundred
1,000,000	•••	9,999,999	11	Thousand

-24-

AL	E B-4			(WATER YEAR	STATION NO.	STATION NAME	-					7
A.Y			GE		1968	F21300	LITTLE SHASTA	RIVER AT M	ONTA GUE			AAA	
E.T.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	4.9 5.2 6.4 * 5.8 6.1	4.9 4.9 4.9 4.9 4.9 4.9	4.6 E 4.6 E 4.6 E 4.6 E 4.3 E	4.0 E 4.0 E 4.0 E 4.0 # 4.0 B	5.2 5.2 5.5 6.1 6.4	24 19 19 18 20	20 20 15 15 16	9.9 9.5 9.1 9.1 8.7	5.6 5.6 5.9 5.6 9.1 *	3.6 3.4 3.4 3.4 3.2	3.2 3.2 3.2 2.8 2.8	2.6 2.6 2.4 * 2.2	1 2 3 4 5
	6.1 5.5 5.2 5.2 4.6	4.9 * 4.9 4.9 4.9 4.9	4.3 E 4.3 E 4.3 E 4.3 E 4.3 E 4.3 E	4.0 E 4.0 E 4.0 E 4.0 E 4.0 E	7.3 8.2 8.7 9.2 9.6	16 15 13 12 11	15 14 15 16 17	8.7 8.7 8.3 7.9	8.3 6.2 5.6 5.6 5.4	3.0 3.0 3.0 3.0 * 2.8	2.8 2.8 3.2 3.0 2.8	2.2 2.2 2.2 2.2 2.2	6 7 8 9 10
	4.6 4.6 4.6 4.6 4.6	4.9 4.9 4.9 6.1 5.8	4.3 E 4.3 E 4.3 E 4.3 E 4.3 E 4.3 E	4.0 E 4.0 E 4.0 E 6.9 14	10 9.6 7.8 6.9 6.9	11 11 10 * 12 E 10 E	18 16 14 14 14	9.1 8.7 9.9 11 9.1	5.4 5.1 5.1 5.1 5.1	2.8 2.8 2.8 2.8 3.0	2.6 2.6 2.6 * 3.2 2.8	2.2 2.4 2.6 3.0 2.8	11 12 13 14 15
	4.6 4.6 * 4.6 4.6 4.6	5.5 5.2 4.9 4.9 4.9	4.3 E 4.3 E 4.0 E 4.0 E 4.0 E	12 13 13 5.8 6.1	6.1 * 7.3 11 16 28	11 E 11 E 12 E 11 11 E	14 12 12 12 12 12	8.3 7.9 7.5 8.3 12	4.8 4.8 4.5 4.2	3.0 3.0 3.0 3.0 3.0 3.0	3.2 2.8 3.6 5.4 5.1	2.6 2.4 * 2.4 2.4 2.4 2.6	16 17 18 19 20
	5.2 5.5 5.2 4.9 4.6	4.9 4.6 * 4.6 4.6 4.6 E	4.0 E 4.0 E 4.0 E 4.0 E 4.0 E	7.8 12 10 * 9.2 8.2	68 114 141 * 74 46	11 E 12 E 13 E 14 E 23 *	11 11 11 11 11 10	11 12 9.5 8.7 8.3	4.2 4.2 4.2 4.2 4.2 4.2	2.8 2.8 2.8 2.8 * 2.8	4.0 3.6 3.4 3.2 3.2	2.6 2.4 2.4 2.4 2.4 2.4	21 22 23 24 25
	4.6 4.6 5.8 5.8 5.5	4.6 E 4.6 E 4.6 E 4.6 E 4.6 E	4.0 E 4.0 E 4.0 E 4.0 E 4.0 E	7.3 E 6.9 E 5.8 E 5.5 E 5.2 E	37 33 29 26	18 15 15 17 19 20	10 10 10 9.9 *	7.5 7.1 6.5 * 6.2 5.9 5.9	3.8 3.8 3.8 3.8 3.8 3.8	2.8 2.6 2.6 2.6 2.6 2.6	3.8 3.2 3.0 2.8 2.6 2.6	2.8 2.6 2.8 2.8 2.8 2.8	26 27 28 29 30 31
NN 16. 1.	5.1 6.4 4.6	4.9 6.1 4.6	4.2 4.6 E 4.0 E 258 E	6.7 14 4.0 E 410 E	25.8 141 5.2 1486	14.6 24 10 900	13.5 20 9.9 801	8.7 12 5.9 534	5.1 9.1 3.6 301	2.9 3.6 2.6 180	3.2 5.4 2.6 197	2.4 3.0 2.2 148	MEAN MAX MIN AC.FT
	210							WATER YEAR	SUMMARY				

-	ESTIMATED
-	ESTIMATED

DISCHARGE MEASUREMENT OR OBSERVATION OF FLOW MADE THIS DAY. E AND*

	LOCATIO	N	MA	XIMUM DISCH	ARGE	PERIOD O	DATUM OF GAGE				
		1/4 SEC T & R	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.
LATITUDE	LONGITUDE	M.D.B.&M.	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
41 45 11	122 17 44	NW15 45N 4W	5910 E	10.66	12/22/64	28-NOV 51 8 APR 52-APR 55 SEP 56-DATE	28-NOV 51 ö APR 52-APR 55 SEP 56-DATE	1956 1965	1964	0.00	LOCAL

 MAXIMUM

 GAGE HT.
 MO.
 DAY
 TIME

 2.91
 2
 23
 0915

23 0915

MEAN

8.0

DISCHARGE

180

TOTAL ACRE FEET

5,820

2.

MINIMUM GAGE HT. MO. DAY

5 11

1.31

DISCHARGE

2.2

TIME

Station located S of Ball Mountain Road, 12 mi. NE of Montague, 16 mi. SW of Macdoel. Stage-discharge relationship affected by ice at times. Drainage area is 48.2 sq. mi.

8 - Irrigation season only.

-25-

TABLE B-4 (Cont.)

WATER YEAR STATION NO. STATION NAME

WEAVER CREEK NEAR DOUGLAS CITY

F41540

1968

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.
1 2 3 4 5	1.6 19 # 9.9 E 5.4 5.7	4.4 4.4 4.4 4.4 4.7	9.9 17 26 57 71 #	19 19 18 E 18 # 17 #	25 E 117 E 180 E 144 E 123 E	162 138 123 109 103	55 49 48 47 46	34 34 34 36 34	13 14 14 12 15	4.4 4.0 4.0 3.6 3.1 *	1.1 1.6 1.2 0.8 0.7	1.1 0.9 0.8 0.7 0.7
6 7 8 9 10	5.1 4.7 4.4 4.1 4.1	4.4 * 4.7 5.4 5.4 5.4 5.4	29 E 28 E 20 E 18 E 17 E	16 E 16 E 17 27 33	146 E 196 E 192 E 210 E 206 E	92 * 85 78 73 66	44 42 43 43 44	32 30 29 29 27	15 13 12 12 12 11	3.1 2.7 2.3 2.0 2.3	0.6 0.5 * 0.6 0.8 0.7	0.6 0.6 0.6 0.6 0.6
11 12 13 14 15	4.1 4.1 4.1 4.1 4.1	5.4 4.7 5.1 17 9.3	16 E 15 E 12 E 12 E 12 E 12 E	27 26 188 971 628 *	192 E 188 E 188 E 152 E 139 #	63 107 89 85 * 68 *	46 43 42 41 41	27 24 26 26 24	10 11 11 10 9.5	2.0 1.7 1.7 1.7 1.7	0.6 0.4 * 0.4 0.4 0.5	0.6 0.7 0.8 0.9 1.2
16 17 18 19 20	3.8 3.8 * 3.8 3.8 4.1	7.1 6.6 6.0 5.7 5.7	12 E 12 E 17 E 12 E 12 E 10 E	277 * 155 * 101 * 72 57 E	201 371 263 997 759 *	143 114 92 * 83 * 78	41 39 38 39 38	22 22 21 29 33	8.3 7.1 6.5 6.1 * 5.7	1.7 * 2.0 1.7 1.3 1.0	0.4 0.5 0.5 1.1 2.2	1.2 1.1 0.9 0.9 * 1.0
21 22 23 24 25	5.1 5.7 5.1 4.7 4.7	5.4 * 5.4 5.4 5.4 5.4 5.4	9.9 E 9.9 E 12 E 12 E 15 E	67 E 99 E 112 E 103 E 91 E	709 * 1470 1310 * 646 * 466	73 68 65 62 71	38 36 34 33 33 33	24 23 21 21 23 23	5.2 5.2 5.2 4.8 4.8	1.0 1.1 * 0.9 0.9 1.0	2.7 2.4 * 2.2 1.8 2.0	1.4 1.6 1.4 1.1 1.1
26 27 28 29 30 31	4.7 4.7 4.7 4.7 4.7 4.4	5.4 5.7 6.0 11 12	20 E 23 E 25 E 25 E 22 E 21 E	72 E 54 E 43 E 46 E 34 E 26 E	358 282 222 184	60 56 55 * 56 56 55	33 32 32 32 32 33 *	21 19 18 16 * 16 14	4.4 4.0 3.6 4.0 4.0	1.0 0.9 0.7 0.7 0.7 0.5	3.3 3.3 2.7 2.4 1.8 1.4	0.9 0.8 0.8 0.7 0.7
MEAN MAX. MIN. AC. FT.	5.1 19 E 1.6 311	6.2 17 4.4 372	19.9 71 E 9.9 1225 E	111 971 16 E 6841 E	367 1470 25 E 21100 E	84.8 162 55 5213	40.2 55 32 2390	25.5 36 14 1565	8.7 15 3.6 518	1.9 4.4 0.5 114	1.3 3.3 0.4 83	0.9 1.6 0.6 54

E -- ESTIMATED NR -- NO RECORD * -- DISCHARGE MEASUREMENT OR OBSERVATION OF FLOW MADE THIS DAY. # -- E AND *

DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME		ACRE FEET
53.3	1780	4.71	2	22	2300	NR						38,720
\square							4				· · ·	

MEAN MAXIMUM MINIMUM

WATER YEAR SUMMARY

TOTAL

	LOCATION	ł	M	XIMUM DISCH	IARGE	PERIOD	PERIOD OF RECORD			DATUM OF GAGE			
LATITUDE	LONGITUDE	TUDE 1/4 SEC. T. & R. M.D.B.&M.	OF RECORD			DISCHARCE	GAGE HEIGHT	PERIOD		ZERO	REF.		
			CFS	GAGE HT.	DATE	DISCHAROL	ONLY	FROM	то	GAGE	DATUM		
40 40 13	122 56 33	SE36 33N 10W	3980 E	12.72	12/22/64	JAN 57-DATE	JAN 57-DATE	1957		0.00	LOCAL		

Station located 0.2 mi. below State Highway 299 bridge, 1.2 mi. N of Douglas City, 4.2 mi. S of Weaverville. Tributary to Trinity River. Drainage area is 48.4 sq. mi.

TBLE B-4 (Cont.)

1

WATER YEAR STATION NO. STATION NAME

NORTH FORK TRINITY RIVER NEAR HELENA

F42100

1968

D.LY MEAN DISCHARGE N CUBIC FEET PER SECOND)

(TY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	26	37	61	268	294	1040	512	296	233	74 E	34	33	1
	68	36	69	233	466	940	478	282	258	68 E	36	31	2
	110	35	100	206	910	856	439	300 *	231	70 E	35	30	3
	58	34	170	181 *	806	802	418	325	208	72 E	32	29	4
	56	36	501	166	714	814	400	312	208	75 #	32	28	5
	53	35 *	345	150	675	739 *	379	260	185	89	30	27	6
	47	34	252	141	758	648	355	241	167	80	29 *	27	7
	44	39	279	141	782	554	345	247	160	69	31	26	8
	43	50	220	186	754	487	350	264	154	63	31	25	9
	41	48	179	225	710	430	391	267	155	59	29	25	10
	40 39 38 37	45 42 42 513 199	166 151 135 114 118	286 284 670 3170 3450 *	652 617 617 577 530 *	400 418 403 409 409 *	448 433 391 358 350	256 237 231 214 198	169 160 141 150 E 152 E	56 * 54 52 51 49	29 28 * 28 29 29	25 25 26 33 29	11 12 13 14 15
5	37	113	110	1730 *	550	481	332	193	160 E	48 *	28	26	16
7	36 *	84	103	1030 *	776	558	308	210	161 E	46	28	25	17
3	36	73	110	751 *	870	469 *	287	222	168 E	43	28	25	18
2	35	66	94	577	1980	442 *	273	385	172 #	41	34	24 *	19
2	35	63	93	498	3600 *	421	264	490	160 E	40	47	24	20
123455	45 65 48 44 41	59 * 56 54 52 51	87 87 98 127 200	537 599 595 567 537	4370 * 6760 7930 * 4400 * 2610	403 397 400 409 547	252 241 235 237 226	310 260 222 204 237	150 E 138 E 128 E 118 E 108 E	40 40 * 38 38 38 37	47 42 * 38 36 40	24 24 24 24 23	21 22 23 24 25
5 7 3 9 0 1	40 38 41 40 39 37	49 49 50 59 64	325 482 516 458 366 306	485 427 386 361 323 304	1950 1560 1320 1150	554 508 502 * 544 561 530	231 254 269 287 315 *	243 267 271 264 * 231 214	100 E 92 E 86 E 82 E 78 E	37 37 35 34 34 34 33	93 68 55 46 40 36	22 22 21 21 21 21	26 27 28 29 30 31
XN	45.0	72.2	207	628	1713	551	335	263	154	51.7	37.7	25.6	MEAN
X.	110	513	516	3450	7930	1040	512	490	258	89	93	33	MAX.
N.	26	34	61	141	294	397	226	193	78	33	28	21	MIN.
FT.	2769	4298	12740	38610	98550	33870	19950	16170	9187	3178	2317	1525	AC.FT.

 ESTIMATED
 NO RECORD
 DISCHARGE MEASUREMENT OR OBSERVATION OF FLOW MADE THIS DAY. E AND *

	LOCATIO	N	MA	XIMUM DISCH	ARGE	PERIOD	OF RECORD	DATUM OF GAGE							
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR	D	DISCHARCE	GAGE HEIGHT	PER	IOD	ZERO	REF.				
	LONGITUDE	M.D.B.&M.	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM				
40 46 56	123 07 39	SW21 34N 11W	35800	27.93	12/22/64	JAN 57-DATE	JAN 57-DATE	1957		0.00	LOCAL				

18.12

MAXIMUM GAGE HT. MO. DAY TIME

2 22

Station located 1.0 mi. above mouth, 0.6 mi. N of Helena. Stage-discharge relationship affected by ice at times. Drainage area is 151 sq. mi.

MEAN

335

DISCHARGE

10300

WATER YEAR SUMMARY

DISCHARGE

21

2400

MINIMUM GAGE HT. MO. DAY TIME

2400

9 28

5.73

TOTAL ACRE FEET 243,200

e •

APPENDIX C GROUND WATER MEASUREMENTS

INTRODUCTION

This appendix contains ground water level measurements from 48 wells for the period October 1, 1967, through September 30, 1968. It also contains a table which summarizes the measurements. Wells in the network are continuously reviewed and, when conditions dictate, replacement wells are located and measured.

There are nine ground water basins in the North Coastal Region for which data are reported.

Two numbering systems are used by the Department to facilitate the processing of water level measurement data. The two systems are the Region and Basin Designation and the State Well Numbering System as described below.

The regions used in this report are geographic areas defined in Section 13040 of the Water Code. That portion of Northern California covered by this report comprises the North Coastal Region No. 1. A decimal system of the form 0-00.00 has been selected according to geographic regions, ground water basins, and subbasins or subareas as follows:

> Region (North Coastal Region) Ground Water Basin (Smith River Plain) Subbasin or Subarea (Subbasins or subareas have not been defined in the North Coastal Region)

00

The State Well Numbering System is based on township, range, and section subdivisions of the Public Land Survey.

|--|

D	С	В	А
E	F	G	H
М	L	K	J
N	P	Q	R

Sequence numbers in a tract are generally assigned in chronological order. The number of a well, assigned in accordance with this system,

is referred to as the State Well Number, as illustrated below:

Township	16N/	T T	-	02	J	
Range						
Section						
Tract						
Sequence Number						
Base and Meridian						

This number identifies and locates the well. In the example, the well is in Township 16 North, Range 1 West, Tract J of Section 2, located in the Humboldt Base and Meridian.

GROUND WATER BASINS, WATER LEVEL MEASUREMENTS

TABLE C-1

AVERAGE CHANGE OF GROUND WATER LEVELS AND SUMMARY OF WELL MEASUREMENTS REPORTED

Ground Water Bas	in	Average Change Spring 1967	Measuring	Number of Wells Reported					
Name	Number	spring 1968 in feet	Agency	Monthly 1967-68	Fall 1967	Spring 1968			
NORTH COASTAL REGION									
Smith River Plain	1-01.00	-1.3	DWR		6	6			
Butte Valley	1-03.00	-1.3	DWR		6	6			
Shasta Valley	1-04.00	-1.8	DWR		7	7			
Scott River Valley	1-05.00	-1.0	DWR		6	5			
Mad River Valley	1-08.00	+0.8	DWR		2	2			
Eel River Valley	1-10.00	-4.0	DWR		4	2 ₄			
Round Valley	1-11.00	+0.5	DWR		6	6			
Laytonville Valley	1-12.00	+1.2	DWR		4	4			
Little Lake Valley	1-13.00	-4.1	DWR		7	6			

DWR - Department of Water Resources

TABLE C-2 GROUND WATER LEVELS AT WELLS

An explanation of the column headings and the code symbols follows:

State Well Number - Refer to the explanation presented on pages 35 and 36 in the Introduction.

Ground Surface Elevation - The numbers in this column are the elevation in feet above mean sea level (USGS) of the ground surface at the well.

Date - The date shown in the column is the date when the depth measurement given in the next column was made. Elevations are usually taken from topographic maps and the accuracy is controlled by topographic standards.

Ground Surface to Water Surface - This is the measured depth in feet from the ground surface to the water surface in the well; some of the depth measurements in the column may be preceded by a number in parentheses to indicate a questionable measurement. The code applicable to these "questionable measurements" is as follows:

- (1)Pumping
- Nearby pump operating (2)
- 3) Casing leaking or wet
- Pumped recently
- (5)Air or pressure gage measurement

- Other (6)
- (7) Recharge operation at or near well
- (8) Oil in casing
- Caved or deepened (9)

When a measurement was attempted, but could not be obtained, then only a number in parentheses is shown in the column. The code applicable to these "no measurements" is as follows:

- Pumping (1)
- (2)Pump house locked
- Tape hung up (3)
- Cannot get tape in casing
- Unable to locate well

Special (8)Casing leaking or wet

Temporarily inaccessible

- 9) Measurements discontinued (0)

The words FLOW and DRY are shown in this column to indicate a flowing or dry well, respectively. A minus preceding the number in this column indicates that the static water level in the well is this distance in feet above the ground surface.

Water Surface Elevation - This is the elevation in feet above mean sea level (USGS Datum) of the water surface in the well. It was derived by subtraction of the depth measurement from the ground surface elevation.

Agency Supplying Data - Each of these numbers is the code number for the agency supplying data for that measurement. The Department of Water Resources is the sole agency supplying ground water level measurement data for this report. It has been assigned an agency code number of 5050.

Well has been destroyed

GROUND WATER LEVELS AT WELLS

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUNO SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TD WATER SURFACE IN FEET	WATER SURFACE ELE VATION IN FEET	AGENCY SUPPLYING DATA
SMITH RIVER PLAIN	1-01.00					MAD RIVER VALLEY	1-08.00				
16n/01 w-02j01 H	127.0	10-04-67 4-10-68	25.4 17.0	101.6 110.0	5050 5050	06N/01E-06H01 н	151.0	10-03-67 4-10-68	12.5 3.5	138.5 147.5	5050 5050
16n/01w-17k01 H	48.0	10-04-67 4-10-68	21.5 15.7	26.5 32.3	5050 5050	06n/01 E- 29P01 H	25.0	10-03-6 7 4 -10-6 8	9.1 6.8	15.9 18.2	5050 5050
17N/01W-02P01 H	31.0	10-04-67 4-10-68	22.1 18.2	8.9 12.8	5050 5050	EEL RIVER VALLEY	1-10.00				
17N/01W-03E01 H	14.0	10-04-67 4-10-68	14.5 10.5	-0.5 3.5	5050 5050	02N/01W-08B01 H	34.0	10-03-67 4-10-68	21.9 15.9	12.1 18.1	5050 5050
17N/01W-15M02 H	21.0	10-04-67 4-10-68	16.6 9.0	4.4 12.0	5050 5050	03N/01W-18D01 H	15.0	10-03-67 4-10-68	2.5	12.5 12.4	5050 5050
18n/01w-26pol H	38.0	10-04-67 4-10-68	16.2 12.7	21.8 25.3	5050 5050	озм/отм-з4јот н	53.0	10-03-67 4-10-68	35.0 32.3	18.0 20.7	5050 5050
BUTTE VALLEY 1-03	3.00					03N/02W-26R01 H	12.0	10-03-67 4-10-68	10.3	1.7	5050 5050
46n/01e-06n01 m	4242.0	10-05-67 4-12-68	22.9 19.2	4219.1 4222.8	5050 5050				1		
46n/02w-25r02 M	4256.0	10-05-67 4-12-68	30.0 24.6	4226.0 4231.4	5050 5050	22N/12W-04B01 M	1351.0	10-02-67	13.8	1337.2	5050
47N/01W-14B01 M	4234.0	10-05-67 4-12-68	10.2 10.5	4223.8 4223.5	5050 5050	22N/12W-06L03 M	1370.0	10-02-67 4-09-68	2.6	1367.4	5050 5050
47N/01W-17R01 M	4240.0	10-05-67 4-12-68	9.3 9.7	4230.7 4230.3	5050 5050	22N/13W-12R01 M	1400.0	10-02-67 4-09-68	24.3	1375.7	5050 5050
47N/01W-19L01 M	4238.0	10-05-67 4-12-68	5.0 5.7	4233.0 4232.3	5050 5050	23N/12W-31NO1 M	1388.0	10-02-67 4-09-68	7.9	1380.1	5050 5050
47N/01W-27B01 M	4233.0	10-05-67 4-12-68	8.6 8.8	4224.4 4224.2	5050 5050	23N/13W-36CO3 M	1410.0	10-02-67 4-09-68	27.2	1382.8 1401.0	5050 5050
48n/01w-26n01 M	4244.0	10-05-67 4-12-68	22.6 19.4	4221.4 4224.6	5050 5050	23N/13W-36Q01 м	1403.0	10-02-67 4-09-68	18.6 1.1	1384.4 1401.9	5050 5050
SHASTA VALLEY 1-0	0880 0	20-04-67	2.0	0970 0	5050	T A MELONDET T VI TRAFT IN					
4211/00#-22001 M	2002.0	4-11-68	4.5	2877.5	5050	21N/14W-30M01 M	1688.0	10-03-67	17.2	1670.8	5050
42N/06W-10J01 M	2835.0	10-04-67 4-11-68	13.5 6.3	2821.5 2828.7	5050 5050	21N/151-01102 N	2680.0	4-09-68	5.6	1682.4	5050
43n/06w-22A01 m	2665.0	10-04-67 4 -11- 68	10.1 (1)	2654.9	5050 5050	21N/15W-12M02 M	1630.0	4-09-68	7.5	1674.5	5050
44n/05w-34но1 м	2637.0	10-04-67 4-11-68	25.6 29.2	2611.4 2607.8	5050 5050			4-09-68	6.9	1623.1	5050
44n/06w-10F01 M	2537.0	10-04-67 4-11-68	16.3 27.8	2520.7 2509.2	5050 5050	21N/15W-24A01 M	1653.0	10-03-67 4-09-68	12.1 3.5	1640.9 1649.5	5050 5050
45N/05w-29B01 M	2635.0	10-04-67 4-11-68	17.3	2617.7	5050 5050	LITTLE LAKE VALLEY	1-13.00				
45N/06W-19E01 M	2538.0	10-04-67 4-11-68	19.8 18.0	2518.2 2520.0	5050 5050	18N/13W-08L01 M	1340.0	~10-03-6 7 4 - 08 - 68	8.5 2.2	1331.5 1337.8	5050 5050
SCOTT RIVER VALLEY	1-05.00					18N/13W-16MO1 M	1380.0	10-03-67 4-08-68	25.3 (4)	1354.7	5050 5050
42n/09w-02A02 m	2746.0	10-04-67 4-11-68	13.0 9.9	2733.0 2736.1	5050 5050	18n/13w-17j01 m	1370.0	10-03-67 4-08-68	20.7 14.4	1349.3 1355.6	5050 5050
42N/09W-08C03 M	2836.0	10-04-67	(0)		5050	18N/13W-18E01 M	1365.0	10-03-6 7 4-08-68	26.2	1338.8 1339.7	5050 5050
42N/09W-27N01 M	2930.0	10-04-67 4-11-68	6.7 4.7	2923.3 2925.3	5050 5050	18n/13w-20H03 M	1385.0	10-03-67	20.3	1364.7	5050
43n/09w-23F01 M	2728.0	10-04-67 4-11-68	6.3 3.5	2721.7 2724.5	5050 5050	19N/13W-32F01 M	1347.0	10-03-67 4-08-68	15.5	1331.5	5050 5050
43n/09w-24f01 m	2735.0	10-04-67 4-11-68	11.0 10.9	2724.0 2724.1	5050 5050	19N/13W-32LO2 M	1350.0	10-03-67 4-08-68	13.0 10.1	1337.0	5050 5050
44n/09w-28pol m	2711.0	10-04-67 4-11-68	18.4 10.0	2692.6 2701.0	5050 5050						

the second second second line in the second s

the local data and the second data in the

the second secon

APPENDIX D SURFACE WATER QUALITY

			~	

INTRODUCTION

This appendix presents surface water quality data collected during the period from October 1, 1967, through September 30, 1968. The data were collected from 27 stream stations in the North Coastal area.

At the time of field sampling, dissolved oxygen, pH, and temperature measurements are made and gage height and time are noted. Comments on local conditions are noted in field books which are available in the files of the Department of Water Resources.

The mineral constituents were determined in accordance with methods presented in the U. S. Geological Survey Water-Supply Paper 1454, "Methods for Collection and Analyses of Water Samples". The analysis for trace elements is in accordance with the U. S. Geological Survey Water-Supply Paper 1540-B, "Concentration Method for the Spectro-Chemical Determination of Minor Elements in Water".

Each station in this appendix has been assigned a station number. The numbering system is described in Appendix B, "Surface Water Measurements". A sequential number (formerly employed) follows each station name for reference.

the second s

- the subject of the second second

SURFACE WATER SAMPLING STATIONS

INDEX TO SAMPLING STATIONS

F01300.00	Smith River near Crescent City (3a)
F21050.00	Shasta River near Yreka (la)
F25250.00	Scott River near Fort Jones (1b)
F31100.00	Klamath River near Klamath (3)
F31220.01	Klamath River at Orleans (2c)
F31430.00	Klamath River near Seiad Valley (2b)
F31470.00	Klamath River above Hamburg Reservoir Site (lc)
F31600.00	Klamath River below Iron Gate Dam (1f)
F34100.00	Salmon River at Somesbar (2a)
F41090.00	Trinity River near Hoopa (4)
F41376.00	Trinity River near Burnt Ranch (4b)
F41640.00	Trinity River at Lewiston (4a)
F51100.00	Mad River near Arcata (6a)
F55100.00	Redwood Creek at Orick (3b)
F61100.00	Eel River at Scotia (6)
F61154.50	Eel River at South Fork (5)
F61329.50	Eel River above Outlet Creek near Dos Rios (5d)
F61350.00	Outlet Creek near Longvale (5b)
F63010.00	Eel River, Middle Fork at Dos Rios (5c)
F63050.00	Mill Creek near Covelo (5e)
F63105.00	Williams Creek near Covelo (5f)
F63120.00	Eel River, Middle Fork at Eel River Ranger Station (5g)
F63200.00	Black Butte River near Covelo (5h)
F64100.00	Eel River, South Fork near Miranda (7)
F65300.00	Van Duzen River near Bridgeville (5a)
F71100.00	Mattole River near Petrolia (7a)
F75100.00	Bear River near Capetown (7b)

-42-

TABLE D-1 SAMPLING STATION DATA AND INDEX North Coastal Area

Station	Station Number	Locotion a	Beginning of Record	Frequency of Sampling	Anolyses on Page
ear River at Capetown (7b)	F75100.00	01N/03W-13 H	MAY 1964	Semiannually	53, 69
Black Butte River near Covelo (5h)	F63200.00	23N/11W-28 M	NOV. 1964	Monthly	53, 69
el River above Outlet Creek (5d)	F61329.50	21N/13W-31 M	APR. 1958	Monthly	54, 67, 69
el River at Scotia (6)	F61100.00	02N/01E-31 H	APR. 1951	Monthly	54, 67, 69
Gel River at South Fork (5)	F61154.50	01s/02E-26 H	APR. 1951	Monthly	55, 69
el River, Middle Fork above Black Butte River (5g)	F63120.00	23N/11W-28 M	NOV. 1964	Monthly	55, 71
Gel River, Middle Fork at Dos Rios (5c)	F63010.00	21N/13W-06 M	APR. 1958	Monthly	56, 67, 70
Gel River, South Fork near Miranda (7)	F64100.00	03s/04e-30 H	APR. 1951	Monthly	56, 72
Damath River above Hamburg Reservoir Site (lc)	F31470.00	46N/10W-14 M	DEC. 1958	Bimonthly	57, 69
Clamath River at Orleans (2c)	F31220.01	11N/06E-31 H	JAN. 1964	Monthly	57, 67, 70
Clamath River below Iron Gate Dam (1f)	F31600.00	47N/05W-17 M	DEC. 1961	Monthly	58, 67, 70
Klamath River near Klamath (3)	F31100.00	13N/01E-24 H	APR. 1951	Monthly	58, 67, 70
Klamath River near Seiad Valley (2b)	F31430.00	46N/12W-03 M	DEC. 1958	Bimonthly	59, 67, 70
Mad River near Arcata (6a)	F51100.00	06N/01E-15 H	NOV. 1958	Monthly	59, 67, 70
Mattole River at Petrolia (7a)	F71100.00	025/02W-11 H	JAN. 1959	Monthly	60, 70
Mill Creek near Covelo (5e)	F63050.00	22N/12W-22 M	FEB. 1965	Monthly	60, 71
Outlet Creek near Longvale (5b)	F61350.00	20N/14W-01 M	MAY 1958	Monthly	61, 71
Redwood Creek at Orick (3b) .	F55100.00	10N/01E-04 H	NOV. 1958	Monthly	61, 71
Salmon River at Somesbar (2a)	F34100.00	11N/06E-02 H	NOV. 1958	Semiannually	62, 71
Scott River near Fort Jones (1b)	F25250.00	44N/10W-29 M	DEC. 1958	Monthly	62, 71
Shasta River near Yreka (la)	F21050.00	46N/07W-24 M	DEC. 1958	Monthly	63, 71
Smith River near Crescent City (3a)	F01300.00	16N/01E-10 H	APR. 1951	Monthly	63, 72
Trinity River at Hoopa (4)	F41090.00	08N/05E-31 H	APR. 1951	Monthly	64, 67, 72
Trinity River at Lewiston (4a)	F41640.00	33N/08E-17 M	APR. 1951	Monthly	64, 72
Trinity River near Burnt Ranch (4b)	F41376.00	05N/07E-19 H	APR. 1958	Bimonthly	65, 72
Van Duzen River near Bridgeville (5a)	F65300.00	01N/02E-12 H	APR. 1958	Monthly	65, 72
Williams Creek near Covelo (5f)	F63105.00	23N/12W-24 M	NOV. 1964	Monthly	66, 72

TABLE D-2 MINERAL ANALYSES OF SURFACE WATER

An explanation of column headings follows:

The LAB and SAMPLER was the Department of Water Resources whose code is 5050.

- TIME Pacific Standard Time on a 24-hour clock.
- GH The instantaneous gage height in feet above an established datum.
- <u>Q</u> The instantaneous discharge in cubic feet per second (cfs). "E" indicates the value has been estimated.
- DO The dissolved oxygen content in milligrams per liter.
- SAT The percent saturation.

- Water temperature in degrees Fahrenheit at the time of field sampl PH LAB & FIELD- Measure of acidity or alkalinity of water.

EC LAB - The electrical conductance in micromhos at 25° Celsius.

EC FIELD - The electrical conductance in micromhos at temperature when sample

- TDS Gravimetric determination of total dissolved solids at 180° Celsiu:
- SUM Total dissolved solids determined by addition of analyzed constitue
- TH
- Total hardness.
- NCH Non-carbonate hardness.

The MINERAL CONSTITUENTS are as follows:

- Boron	K	-	Potassium
- Calcium	MG	-	Magnesium
- Chloride	NA	-	Sodium
- Carbonate	NOz	-	Nitrate
- Fluoride	SIO	-	Silica
- Bicarbonate	S04	-	Sulfate
	 Boron Calcium Chloride Carbonate Fluoride Bicarbonate 	 Boron K Calcium MG Chloride NA Carbonate NO₃ Fluoride SIO₂ Bicarbonate SO₄ 	- Boron K - - Calcium MG - - Chloride NA - - Carbonate NO ₃ - - Fluoride SIO ₂ - - Bicarbonate SO ₄ -

TABLE D-2

STATION	NUMBER					РМ Е	C r4	11NEH	AL CO	STITUE	NTS IN	MIL	LIGRAMS	5 PER LI /4LENTS	TER PER L	ITER	м	ILLIGH	AMS PE	R LITE	н
UATE TIME	LA8 SAMPLER	G.H.	00 SAT	TEM	P	LAB L FLD F	AU Lu	CA	MG	NA	ĸ	PERI CO3	CENT RE	ACTANCE	VALU	N03	F	н	5102	T05 50M	TH
				F	01.30	000			541	TH RIV	ER NEA	H CRES	SCENT (CITY (3A)						
F01300.0 10/03/67 1030	00 7 5050 5050	8.90 1300.0	10.5	56 13	F C	7.8 1 7.5	50			2.8 .12 8		0.0	70 1.15 76		3.9 •11 7			0.0			67 10
F01300.0 11/07/61 1045)0 7 5050 5050	7.25 373.0	10.8	54 12	F C	8.0 1 8.0	60			2.7 .12 7		0.0	83 1.36 85		3.3			0.0	**		75 7
Ful300.0 12/05/67 1205	00 5050 5050	16.55 15700.0	12.2	46 7	F C	8.1 7.5	99			2.4 .10 10		0.0	51 .84 84		4.7 •13 13			0.0			53 11
F01300.0 01/09/68 1120	0 5050 5050	12.17 5364.0	12.6	45	F C	8.0 1 7.3	00			1.6 .07 7		0.0	53 .87 87	-	2.5 .07 7			0.2			48 5
Ful300.0 02/05/68 1704	0 5050 5050	14.84 6040.0	12.6	46 7	F C	8.0 7.5	90			1.5 .07 7		0.0	48 .79 87		3.1 .09 10			0.0			42 3
F01300.0 03/05/68 0715	0 5050 5050	11.11 3010.0	12.0	49 9	F I C	8.0 7.3	96			1.6 .07 7		0.0	52 •85 88	tir ga	1.6 .05 5			0 • 0	**		47 5
F01300.0 04/02/68 1010	0 5050 5050	10.88 2920.0	12.2	48 (8 (F I C ·	8.0 7.5	24			1.6 .07 7		0.0	52 •85 90		2.0 .06 6			0.0			45 3
F01300.0 05/07/68 0640	5050 5050	8.17 887.0	11.4	52 (11 (F (8.3) 7.3	18	9.4 .47 38 ⁻	7.9 .65 53	2.2 .10 8	0+4 +01 1	0 • 0	65 1.07 89	3.4 .07 6	2.2	0•0	•••	0.0	• •	72 57	56 3
F01300.0 J6/03/68 1530	6 5050 5050	8.66 1220.u	10.3 103	60 15	F (d.3 1 7.8	19			1.9 .08 6		0.0	66 1.08 90		2.0 •06 5		-	0.0			56 2
F01300.0 07/09/68 0955	0 5050 5050	7.11 418.0	'9.4 101	67 19	F (C	8.2 1 7.8	8			1.8 .08 5		0.0	80 1.31 88		2.4 .07 4			0.0			70 5
Fu1300.0 05/05/68 0800	0 5050 5050	6.74 319.0	10.2	64 1 17 0	F ł C ł	8.2 10 8.2	56			2.7 .12 7		0.0	90 1.48 89		2.7 .08 4			0.0			78 4
F01300.0 09/10/68 1430	0 5050 5050	6.73 300.J	10.7 113	65 18 (F C	7.6 10 8.3	54	9.5 .47 28	13 1.07 64	2.8 .12 7	9 • 0 1 • 0	0.0	96 1.57 89	5.9 .12 7	2.7 .08 5	0•0		0.0		92 82	78 0
				F	21050	000			5	HASTA	RIVER	NEAR Y	REKA (1A)							
F21050.0 10/09/67 1015	0 5050 5050	3.48 192.0	10.6 108	56.01 13.30	F e C é	5.3 5 8,4	71			41 1,78 31		0.0	309 5.07 88		24 •68 11			0.4			206 0
F21050.0 11/08/67 1345	0 5050 5050	3.50 196.0	11.5 106	52.50	F E C E	8.7 5: 8.5	3			38 1.65 32		17 •57 11	287 4.71 91		21 •59 11			0.4			193 0
F21050.0 12/12/67 1315	0 5050 5050	3+58 224+0	12.3 102	40+01	F E C E	8.5 59 8.4	56			43 1.87 33		10 • 33 5	275 4.51 81		26 •73 13			0.4			195
F21050.0 01/03/68 1255	0 5050 5050	3.53 210.0	13.4 106	37.06	F√ E C E	8•3 5(9•4	7			36 1.57 30		0.0	269 4,41 86		15 •42 8			0.5			184
F21050.0 02/13/68 1100	0 5050 5050	3.65 248.0	12.2 195	43 F 6 (F E C E	8.5 51 8.3	13			37 1.61 31		11 • 37 7	259 4.25 82		19 • 54 10			0.4			196
F21050.0 03/06/68 1115	0 5050 5050	3.63 242.0	11.1 101	47 F 8 0	F E C E	8,6 50 8,4)6			30 1.31 25		8.0 •27 5	197 3.23 63		19 •54 10			0+4			189 14
F21050.0 04/01/68 1354	0 5050 5050	3.16 103.0	10.2	58 F 14 (F E C E	8 .7 57 8.4	4			43 1.87 32	an an	16 • 53 9	288 4.72 82		23 •65 11			0.5			223 0
F21050.0 05/06/68 1150	0 5050 5050	2.82 45.0	10.2	57 F 13 0	F E C E	5.7 72 5.4	2	43 • 15 26	46 3•78 46	52 2.26 27	3.6 .09 1	22 • 73 9	378 6.20 78	8,7 •19 2	30 .85 11	0.7 .01		0.7		336 392	297 0
F21050.0 06/11/68 0700	0 5050 5050	3.08 87.0	8.8 33	62 F 16 (8.7 63 8.4	16			46 2.00 31		15 •50 7	331 5.43 85		26 •73 11	**		0.8			249
F21050.0 07/03/68 1110	0 5050 5050	2.57	9.8 123	75 F 23 (F 9	9.0 74 3.4	9			49 2.13 28		39 1.30 17	346 5.67 75		33 •93 12			0.7			292
F21050.0 UR/06/68 1400	0 5050 5050	2,49 9.4	9.7 127	79 F 26 (8.7 68 8.4	8			55 2.39 34		21 • 70 10	380 6,23 90		39 1.10 15	••		0.8			285 0
F21050.0 09/04/68 1050	0 5050 5050	2.79	9.9 115	67 F	F E	d.6 63	1	34	37 3.04	50 2.18 31	4.0 .10	19	324 5,31 76	7.9	31 •87	0.4		0.7		350 343	238 0

TABLE D-2 (Continued) MINERAL ANALYSIS OF SURFACE WATER

STATION N DATE TIME S		G.H. Q	00 SAT	ŤΕ	MP.	PH LAB FLD	EC LAG FLO	MINER	AL CON	ISTITUE	NTS IN K	MILL MILL PERC CO3	IGRAMS IEQUIV ENT RE HC03	PER LI ALENTS ACTANCE 504	TER PER LI VALUE CL	NO3	M. F	ILLIGRA B	5102	LITER TDS SUM	TH NCH
					F252	25000			SC	OTT RIV	VER NEA	R FOR	I JONE	5 (13)							
F25250.00 10/09/67 1330	5050 5050	5.05 104.0	11.4	60. 15.	OF 5C	8.2 8.2	297	••		5.3 .23 7		0.0	175 2+87 96		5+0 +14 4			0.0			145 2
F25250.00 11/09/67 1145	5050	5.01 91.0	11.6	52 11	FC	8.4 d.1	283	••		5.1 .22 7		4.0 +13 4	160 2.62 92		4.4 +12 4			0.0			143 6
F25250.00 12/12/67 1430	5050 5050	5.19 149.0	12.4 103	39 3	FC	8.3 7.6	253			5.3 .23 9	••	Ú.O	143 2.35 92	••	6.0 ±17 6	••		0.0			120 3
F25250.00 01/04/68 0800	5050 5050	5.15 137.0	12.9 97	31	F C	8.0 7.3	241	••		3.2 .14 5		0.0	142 2+33 96		3.2 .09 3	••		0.0			122
F25250.00 02/13/68 1530	5050 5050	6.54 676.0	11.5 103	44 6	FC	7.9 7.6	202	••		2.4 .10 4		0.0	116 1+90 94	••	1+4 +04 1	••		0.0			97 2
F25250.00 03/06/68 1510	5050 5050	7.71 1330.0	10.8 97	44 6	F C	8.2	152			2.2 .10 6		0.0	86 1•41 92		1+1 +03 1			0.0			74
F25250.00 04/02/68 0755	5050 5050	6.93 880.0	10.6 98	46 7	F C	7.8 7.5	149			2.0 .09 6		0.0	86 1+41 94	••	0.5 ±01			0.0			70 0
F25250.00 05/06/68 1600	5050 5050	6.28 600.0	10.0 120	68 19	F	7.9 7.5	171	15 •75 42	11 .90 50	2.7 •12 7	0.9 .02 1	0.0	95 1.56 93	0.8 .02 1	2.6 •07 4	1.2 .02 1		0.0		94 81	82
F25250.00 06/11/68 1030	5050 5050	5.57 264.0	9.8 90	61 16	FC	8.5 7.9	212			3.5 •15 7		2.0 .07 3	119 1+95 91		2.2 .06 2		••	0.1			108 7
F25250.00 07/03/68 1730	5050 5050	4.31 102.0	11.3 147	76 24	FC	8.7 8.2	288			3+4 +15 5		6.0 .20 6	145 2+38 82		5.2 •15 5	••	****	0.0			137 8
F25250.00 08/06/68 1255	5050 5050	3.98 44+0	11.3 145	75 23	F C	8.3 8.0	285		••	5.7 .25 8	•••	0.0	165 2.71 95		4+9 +14 4			0.0			151 16
F25250.00 09/05/68 0715	5050 5050	3.94 42.0	7.0 76	59 14	FC	7+8 7+4	285	30 1.50 51	15 1+23 42	4+4 +19 6	0.7 .02 1	0.0	163 2.67 88	7+4 +15 5	6.0 .17 6	2+7 +04 1		0.0		155 146	137
					F311	0000				KLAMAT	H RIVER	NEAR	KLAMA	TH (3)							
F31100.00 10/03/67 0915	5050 5050	4.99 4420.0	9.1 90	59 14	FC	7.8 7.7	216	22 1.10 46	8.8 .72 30	12 •52 22	1.7 .04 2	0.0	105 1.72 75	13 •37 16	6.1 •17 7	1.2 .02 1	0.1	0.1	17	136	91 5
F31100.00 11/07/67 0915	5050 5050	4.06 2950.0	10.2 96	55 12	FC	8.0 8.0	221	21 1.05 44	10 .82 34	11 •48 20	1+7 +04 2	0.0	120 1.97 81	13 •27 11	6.0 .17 7	1+4 +02 1	0 • 1	0.1	17	140	94 0
F31100.00 12/05/67 1000	5050 5050	11.17 28850.0	11+6 97	46 7	FC	7+8 7+4	140	14 •70 48	5.9 .46 33	5+6 +24 17	1.0 .03 2	0.0	63 1.03 73	11 •23 16	4.5 +13 9	1+4 +02 1	0 • 0	0.0	13	87	60 9
F31100.00 01/09/68 0920	5050 5050	7.05 8727.0	12.6 97	40	FC	7.4 7.4	167	16 •80 46	7+3 +60 34	7.3 .32 18	1.2 .03 2	0.0	84 1.38 82	9+0 +19 11	1.6 .05 3	3+5 +06 4	0 • 1	0.1	16	118 103	70 1
F31100.00 02/05/68 1340	5050 5050	11.03 28150.0	12.6 106	46 7	FC	7.5 7.6	133	14 •70 49	6.4 .53 37	4.2 .18 13	0.9 .02 1	0.0	54 1.05 72	17 •35 24	1.9 .05 3	0.5 .01 1	0.0	0.0	14	77 90	62 10
F31100.00 03/04/68 1615	5050 5050	10.90 27500.0	11.3 101	51 10	FC	7.9 7.6	141	15 •75 51	6.5 .53 36	3.8 .17 12	0.8 .02 1	0.0	76 1.25 86	7.0 •15 10	1+4 +04 3	0+5 +01 1	0 + 1	0.0	15	87 97	54 2
F31100.00 04/02/68 0845	5050 5050	9.15 19000.0	10.8 101	55 12	FC	7.8 7.6	140	15 .75 51	6.5 .53 36	3.9 .17 12	0.9 .02 1	0.0	74 1+21 83	9.0 .19 13	1+4 +04 3	1+3 •02 1	0 • 0	0.1	14	85	64 4
F31100.00 05/07/68 0800	5050 5050	6.94 8450.0	10.4 99	56 13	FC	7.7 7.5	145	15 •75 50	6.6 .54 36	4+3 +19 13	0.9 .02 1	0.0	77 1.26 82	9.0 .19 12	2.4 •07 5	0.8 .01 1	0.0	2.8	12	92	64 1
F31100.00 06/04/68 0715	5050 5050	6.38 7050.0	9•1 95	64 17	F C	7 • 7 7 • 7	148	16 .80 51	6.7 .55 35	4.5 .20 13	0.9 .02 1	0.0	81 1.33 83	9.0 .19 12	2.6 .07 4	1.3 .02 1	0 • 1	0.0	12	93	65 2
F31100.00 07/09/68 1145	5050 5050	5.17 3440.0	8.4 95	72 22	FC	6.0 8.0	195	20 1.00 49	8.4 .69 34	7.0 .30 15	1+4 +04 2	0.0	100 1.64 81	12 •25 12	4+0 +11 5	2.0 .03 1	0.1	0.0	13	117	84
F31100.00 08/06/68 0930	5050 5050	4.67	d.5 95	70 21	FC	7.9	216	22 1.10 48	9.3 .76 33	6.6 .37 16	1.7 •04 2	0.0	114 1.87 85	9.0 .19 9	4.6 .13 6	0.0	0 • 1	0.0	13	124	94 1
F31100.00 09/10/68 1315	5050 5050	4.73 2530.0	10.0	68 19	FC	8.1	215	21 1.05 46	9.2 .76 33	10 •44 19	1.7 .04 2	0.0	111 1.82 78	14 •29 13	6.8 •19 8	1 • 3 • 02 1	0.2	0.0	15	13+	90 0

STATION	NUMBER					РН	EC	MINER	AL COM	STITUE	NTS IN	MILL MILL	IGRAMS	PER L	ITER PER L	ITER	м	ILLIGH	AMS PER	R LITER	2
OATE TIME	LAU SAMPLEN	G.H.	DO SAT	Τċ	MP	LA9 FLO	LA8 FLU	CA	MG	NA	ĸ	PEHO CO3	HC03	ACTANC SO4	E VALU CL	E NO3	F	-1	5102	105 Sum	TH
													_								
					- 312	22001				KLAMAT	H HIVE	HAT	DRLEANS	(20)							
F31220.0 10/02/67 0935	5050 5050	2268.0	9.2 94	61 16	FC	8.0	227	••	~~	14 •61 26		0.0	109 1.79 76		6.2 17 7	•-		0.0			80 0
F31220.0 11/05/67 1225)1 5050 5050	5.13 2320.0	11.5 110	55 12	FC	8.1 8.2	228			16 • 70 30		0.0	110 1.00 78		6.5 .18 7			0.1			81 0
F31220.0 12/04/67 1225)1 7 5050 5050	6.92 5260.0	12.2 99	42	F C	8.2 7.3	193			17 •52 26		0.0	91 1+49 77		4.4 +12 6		**	0.1			68 0
F31220.0 01/08/68 1540)1 5050 5050	5.78 3510.0	14.0 105	37 2	F C	7.8 7.6	186			12 •52 27		0.0	93 1.53 82		4+5 -+13 6			0.1			65 0
F31220.0 02/05/68 10+5	5050 5050	10.01 12400.0	13.4 108	42 5	F C	8.1 7.7	147			5.0 .22 14		0.0	73 1.20 81		2.2			D • 0			66 6
F31220.0 03/04/68 1150	5050 5050	9,92 13960•0	12.2	48 8	F C	8.1 7.6	147			4.8 .21 14		0.0	74 1.21 02	••	1.1 .03 2			0.0			54
F31220.0 04/01/68 1145	1 5050 5050	8.24 9425.0	11.9 108	51 10	FC	8.0 7.8	142			4.4 +19 13		0.0	72 1.18 83		2.0			0.1			62 3
F31220.0 05/06/68 1045	1 5050 5050	6.20 5270.0	10.5 101	55 12	F C	8.3	148	14 .70 48	6.1 .50 34	5.1 .22 15	1.1 .03 2	0.0	73 1.20 90	3.1 .05 5	2.6	0.1		0.0		90 68	60 0
F31220.0 06/03/68 1030	1 5050 5050	5.64 4300.0	9.7 98	63 17	F C	7.9 7.8	142			5.3 .23 16		0.0	73 1.20 54		2.4 .07 4			0 = 0			59 0
F31220.0 07/08/68 1250	1 5050 5050	3.37 1850.0	8.8	75 23	F C	8.1 8.0	195		••	7.5 .33 16		0.0	100 1.64 84	••	3.6 •10 5		•-	0 = 1			79 0
F31220.0 08/05/68 1030	1 5050 5050	3.08 1380.0	9.7 111	71 21	F C	8.3 8.2	212	••	••	13 •57 26		U.O	107 1.75 82		5.0 .14 6			0.1			79 0
F31220.0 09/09/68 1210	1 5050 5050	3.42 1580.0	9.9 111	69 20	F C	7.7 8.2	216	17 •85 37	9•1 •75 33	14 •61 27	2.4 .06 3	0.0	109 1.79 83	10 •21 10	5.3 •15 7	0 • 1		0.1		136 111	80 0
					F314	3000			KL	AMATH P	IVER	NEAR S	EIAD V	ALLEY	(28)						
F31430.0	0		10.6	52	F	8.2	252			20		0.0	118		6.5	6.3		0.2			86
11/09/67 0955	5050 5050	2240.0	101	11	C	7.8				.87			1.94 76		•18 7	.07					0
F31430.0 01/03/68 1545	0 5050 5050	2400.0	13.6 103	35 1	F	7.6 7.5	226			17 •74 32		0.0	110 1.80 79	••	4.7 .13 5	6.4 .10 4		0.1			76 0
F31430.0 03/06/68 1400	0 5050 5050	5570.0	11.3 99	45.	5F 4C	8.1 7.6	203			10 •44 21		0.0	99 1.62 79		4.4 +12 5	3.2 .05 2		0.1			76 0
F31430.0 05/06/68 1450	0 5050 5050	2410.0	11.1	56 13	FC	8+1 8+4	189	15 .75 38	8.9 .73 37	10 •44 22	1.7 .04 2	0.0	94 1.54 82	9.9 •21 11	4.3 .12 6	0 • 4 • 01 1		0.1		110 96	74 0
F31430.0 07/03/68 1600	0 5050 5050	1040+0	10.0 123	75 23	FC	9.4 8.4	223	••		15 •65 29		18 •60 26	78 1.28 57		5.6 •16 7	0 • 1	•-	0.1			8¢ 0
F31430.0 09/04/68 1530	0 5050 5050	1190.0	10.4	71 21	FC	8.0 8.4	225	15 .75 33	8.9 .73 32	17 •74 32	2.6 .07 3	0.0	110 1.80 77	14 •29 12	7.4 •21 9	1.6 .03 1		0.0		128 120	74
					F314	7000		к		RIVER	ABOVE	HAMBU	RG RES	ERVOIR	SITE	(10)					
F31470.0 11/09/67 0820	0 5050 5050	1976.0	9.5 89	51 10	F C	8.2	263	••	••	22 • 96 36		0.0	118 1•94 73		6.7 •19 7	5.1 .09 3	••	0.1		••	86 0
F31470.0 01/03/68 1515	0 5050 5050	1880.0	14.0	35 1	FC	7.8 7.5	224			18 •78 34		0.0	107 1.75 78		5.2 •15 6	6+H +11 4		0.2			71 0
F31470.0 03/06/68 1320	0 5050 5050		11.3 92	45 7	FC	8.2 7.7	235			15 •65 27		0.0	107 1.75 74		4.0 +11 4	2.3 .04 1		0.1			79 0
F31470.0 05/06/68 1410	0 5050 5050		11.4 118	59 14	FC	8.2	214	15 •75 33	8.9 .73 33	16 •70 31	2.3 .06 3	0.0	96 1.57 74	18 • 37 19	5.5 16 8	0.6 .01		0.2		125 114	74 0
F31470.0 07/03/68 1445	0 5050 5050		12.3	77 24	FC	9.8 8.4	219			18 •78 35		33 1.10 50	39 •64 29		5.6 •16 7	0.1		0.1			75 0
F31470.0 09/04/68 1430	0 5050 5050		10.2	70 21	FC	7.7	221	13	8.6 .71 32	18	2.7	0.0	105 1.72 76	14 •29 13	7.0 •20 9	2.3		0.1		114 117	68 0

												MIL	IGRAMS	5 PER L	ITER						
STATION N DATE TIME S		G.н. Q	00 SAT	T	ЕМР	PH LAB FLD	EC LAB FLD	MINER	AL CON	NA	NTS IN	MILI PERC CO3	LIEQUIN CENT RE HC03	ALENTS	PER L E VALU CL	ITER E NO3	M F	ILLIGH B	SIO2	R LITER TOS SUM	R TH NCH
					5314	60000			KI A-I	ATM DI	VED 251			E DAM	(15)						
F31600.00			6.0	62	F	8.0	197			16		0.0	86		4.0	4.5		0.1			62
10/09/67 1120	5050 5050	1690.0	66	16	C	7.3				.70			1.44 73		•11 5	•07					0
F31600.00 11/08/67 1445	5050 5050	1760.0	5.8 56	52 11	F	7.9	231		••	21 •91 39	**	0.0	96 1.57 67		5.5 •16 6	5.5 .09 3		0.1			69 0
F31630.00 12/12/67 1234	5050 5050	2844.0	10.3 87	41 (5 (5F 2C	7.8 7.3	217			20 .87 40		0.0	88 1.44 66		5.6 .16 7	6 • 1 • 1 0 • 4		0.1			59 0
F31600.00 01/03/68 1345	5050 5050	1670.0	11.5 90	36 2	FC	7.5 7.3	181			15 •65 35		0.0	82 1.34 74		2.8 •08 4	7.6 .12 6		0+1			52 0
F31600.00 02/13/68 1145	5050 5050	1830.0	12.6 104	40 4	FC	7.6 7.6	230			19 •83 36		0.0	93 1.53 66	••	3.9 +11 4	6.7 .11 4		0.1	**		66 0
F31600.00 03/06/68 1210	5050 5050	2910.0	12.8 115	46 7	FC	7.9 7.5	211	••		17 • 74 35		0.0	88 1.44 68	••	3.8 .11 5	5.7 .09 4		0.1	••		65 0
F31600.00 04/01/68 1510	5050 5050	1320.0	9.7 90	48 8	FC	7 .7 7 . 5	225			17 •74 32		0.0	88 1.44 64	••	1.9 •05 2	2.6 .04 1		0.1			71 0
F31600.00 05/06/68 1255	5050 5050	1020.0	11.2	58 14	FC	8.0 8.4	207	14 •70 33	7.5 .62 29	17 •74 35	2.5 .06 3	0.0	86 1•41 70	21 •44 22	5.0 •14 7	1.0 .02 1		0.1		124 110	56 0
F31600.00 06/11/68 0800	5050 5050	722.0	9.4 91	64 17	FC	8.1 8.4	177			14 •61 34		0.0	83 1.36 76		3.8 •11 6	0.9 .01		0 • 1			55 0
F31600.00 07/03/68 1215	5050 5050	701.0	10.9 120	69 20	FC	9.2 8.4	212			17 •74 34	••	13 •43 20	69 1.13 53	••	4.4 +12 5	2.3 .04 1		0.1			65 0
F31600.00 08/06/68 1450	5050 5050	729.0	8.9 109	72 22	FC	8.0 8.4	229		**	17 •74 32		0.0	93 1.53 66	••	4.4 +12 5	2.0 .03 1		0.1			62 0
F31600.00 09/04/68 1200	5050 5050	1040.0	9.6 113	68 19	F C	7.5 8.4	194	13 •65 35	6.2 .51 27	15 •65 35	2.7 .07 4	0.0	89 1.46 75	14 •29 15	4.8 +14 7	3.0 .05 3		0.0		131 102	58 0
					F341	0000			SA	LMON R	IVER AT	SOME	SBAR (2A)							
F341J0.00 05/06/68	5050	4.22 1600.0	11.6	48 8	F C	8.1 7.4	74	10	1+7 +14	1.6	0.5	0.0	40	1.5	1.2	0 • 1		0.0		53 36	32 0
F34100.00 09/09/68	5050	2.73 174.0	10.0 111	68 19	F C	7.7 8.2	161	21	4.5	3.7	1+6	0.0	82 1.34	6.7 +14	2.4	0 • 0		0.0		77 80	71 4
113*	5050				F410	9000		0.5	e s Ti	RINITY	RIVER	NEAR	HOOPA	(4)	5						
F41090.00 10/02/67 1030	5050 5050	14.18 482.0	8.6 87	60 15	F C	7.9 7.2	224			4.8 •21		0.0	110 1.80 80	**	5.3 15	1.0 .02		0.0			99 9
F41090.00 11/06/67 1125	5050 5050	14.50 735.0	10.1 99	58 14	FC	8.0 7.4	220			5.8 .25	••	0.0	109 1.79 81		6.7 •19 8	0.6	•-	0.0	••	•••	101 12
F41090.00 12/04/67 1125	5050 5050	17.57 3744.0	11+4 95	45 7	FC	7.9 7.5	179		••	3.9 .17 9		0.0	80 1.31 73	••	4.1 .12 6	0+4 +01		0.1	••		82 17
F41090.00 01/08/68 1330	5050 5050	15.55	13.2 101	39 3	FC	8+0 7+4	198		••	4+1 +18 9	••	0.0	99 1.62 81		4.0 .11 5	0.6	••	0.0		••	94 13
F41090.00 02/05/68 0945	5050 5050	20.67 9930.0	12.2	43 6	FÇ	8.2 7.7	164	••		2.5 .11 6		0.0	88 1.44 87		2.4 .07 4	0.5	•=	0.0			78 6
F41090.00 03/04/68 1059	5050 5050	18.42 5940.0	11.3 99	49 9	FC	8.1 7.8	157		•-	2.2 .10 6	••	0.0	84 1.38 87	••	0.0	0•2	••	0.0		**	79 10
F41090.00 04/01/68 1045	5050 5050	15.60 2100.0	10.7 98	52 11	FC	8.1 7.6	158		••	2.2 •10 6	••	0.0	86 1•41 89	••	3.0 .08 5	0+1		0.0			78 8
F41090.00 05/06/68 0940	5050 5050	15.76 2250.0	10.9	54 12	FC	8.3 7.8	164	21 1.05 64	5.5 .45 27	3.3 .14 8	0.5	0.0	86 1.41 87	6.2 .13 8	2.7	0.1		0.0		100 81	75 5
F41090.00 06/03/68 0930	5050 5050	15.04 1570.0	9.4 97	64 17	F	7.8 7.6	172	••		3.5 •15 8		0.0	88 1.44 83		2.8 •08 4	0•0	••	0.0	••		79 7
F41090.00 07/08/68 1145	5050 5050	14.09 874.0	8.5	75 23	FÇ	8.4 7.3	214		••	3.1 .13 6		1.0 .03 1	107 1.75 81	••	3.9 •11 5	0 • 4 • 01		0.0	••		100

STATION	NUMBER					Рн	EC	MINER	AL CON	STITUE	NT5 1N	M1LL M1LL	IGRAMS	PER LI	PER LI	TER	м.	ILLIGR	AMS PER	LITER	c
DATE	LAN SAMPLER	G.H. Q	00 SAT	TE	MP	LA8 FLD	LAB FLD	CA	MG	NA	*	PERC CU3	HC03	ACTANCE 504	E VALUE CL	103	F	3	5102	TD5 SUM	TH NCH
					F41(09000			TI	RINITY	RIVER	NEAR	HOUPA	(4)				co	NTINUED		
*+1090+0)b/05/68	00 3 5050	13.41 344.0	9.1 102	70 21	F C	8.2	231		••	5.4		0.0	115		5.2	0.0	••	0.0			113 19
41090.0 99/09/68	5050 3 5050	13.48 482.0	9.2	20 20	F C	8.3	228	16	16 1.32	5.6	1.0	0.0	113	12	5.7	0.0		0.0		121	105
1015	5050				F413	37600		33	55 TRI	10 R VIIV	1 IVER NI	EAR BU	82 JRNT RA	11 NCH (46	7						
*+1376.0 11/06/61 1030	00 7 5050 5050	416.0	10.6	53 11	F C	8.0 7.7	161	4 4		5.4 .23 14		0.0	82 1.34 83		6.4 .18 11			0.0			69 2
41376.0 01/04/68 1210	5050 5050		13+6 104	37 2	FC	8.0 7.5	160			4.0 .17 10		0.0	80 1.31 81		4.5 .13 8			0.0			73 8
-41376.0)3/04/68 0930	5050 5050	2450.0	11.4	47 8	F C	8.1 7.6	148			2.5 •11 7		0.0	78 1.28 86		1.1 .03 2	0.1		0.0			75 11
F41376.0 J5/06/68 U815	5050 5050	970.0	10.1 95	53 11	F C	8.2 7.5	124	15 •75	4.5 .37 29	3.1 .13 10	0.5	0.0	66 1.08 91	1.6 .03 3	2.8 •08 7	0 • 1		0.0		76 60	56 2
F41376.0 07/08/68 1040	5050 5050	374.0	9.1 109	75 23	FC	8.0 8.1	147			3.0 .13 8		U • 0	75 1.23 83		4.6 •13 8	0•2		0.0			64 3
F41376.0 09/09/68 0845	10 5050 5050	312.0	8.9	70 21	F C	8.2 8.1	159	12 •60 38	9•1 •75 •7	5.2 .23 14	0.7 .02 1	0.0	63 1.36 87	2.3 .05 3	5.8 •16 10	0•1		0.0		96 76	68 0
					F416	54000			TF	RINITY	RIVER	A1 LE	WISTON	(4A)							
541640.0 10/02/67 0700	0 5050 5050	2.99 168.0	10+1 91	47 8	FC	7+7 7+1	96			2.5 .11 11		0.0	52 .85 88		1.8 •05 5	0.2		0.0			38 0
F41640.0 11/06/67 0845	5050 5050	3.34 256.0	10.7 97	47 8	F C	7+4 7+3	97			2.5 .11 11		0.0	53 •87 89		2.2 .06 6	0.0		0.0			54 0
F41640.0 17/04/67 0840	0 5050 5050	3.22 215.0	10.8 92	42+ 5+	5F 8C	7.7 7.1	95		•-	2.8 .12 12		0.0	53 .87 91		2.0 .06 6	0.5 .01 1		0.1		• •	43 0
F41640.0 U1/08/68 1030	0 5050 5050	2.98 161•0	11.8 101	43 6	FC	7.6 7.1	98			2.9 •13 13		0.0	54 .89 90		2.2	0.5 .01 1		0.0			43 0
F41640.0 02/05/68 0745	10 5050 5050	2.99 161.0	11.6 98	42	FC	7.8 7.2	92			2.0 .09 9		0.0	51 •84 91		1.5	0•2		0.0			39 0
F41640.0 03/04/68 0800	10 5050 5050	2.98 153.0	11.3 101	46	FC	7.7 7.3	97			2.6 .11 11		0 • 0	53 •87 89		0.0	0 • 1	•••	0.0			46 3
F41640.0 04/01/68 0800	0 5050 5050	2.99 164.0	9.8 90	48 8	FC	7.6 7.3	97			2.2 .10 10		0.0	53 •87 89		1.3 .04 4	0•0		0.1			44 1
F41640.0 05/06/68 0655	0 5050 5050	2.97	11.7 101	44 6	FC	8.1 7.2	90	5.5 .27 .29	6.7 .55 59	2.6 .11 12	0.4 .01 1	0.0	50 .82 93	0.5 .01 1	1.9 .05 6	0 • 1		0.0		44 42	41 0
F41640.0 06/03/68 0625	5050 5050	2.99 157.0	10.8	46 7	F C	7.6 7.3	90			2.3 .10 11		U . O	50 .52 91		1.4 •04 4	0 • 1		0.0			40 0
F41640.0 07/08/68 0825	0 5050 5050	2.98 150.0	10.8 98	47 8	FC	8.1 7.3	89			1.7 .07 7		0.0	50 .82 92	~ -	1.1 .03 3		**				40 0
F41640.0 08/05/68 0650	0 5050 5050	2.98 158.0	10.7 97	47 8	F C	7.9 7.1	92	••		2.5 .11 11		0.0	52 • 85 92		1.5 .04 4	0 • 0		0 • 0			43 1
F41640.0 09/09/68 0710	0 5050 5050	3.20 203.0	10.2 98	52 11	FC	8.4 7.2	91	5.2 .26 .28	6.6 .54 59	2.5 •11 12	0.5 .01 1	0.0	51 .84 95	0.0	1.5 .04 5	0.0	**	0.0		76 41	40 0
				I	F511	0000				MAD	RIVER	AT AR	CATA (6A)							
F51100.0 10/02/67 1220	0 5050 5050	4.40 115.0	9.4	60 15	FC	8.0 8.0	198			•.8 •21 10		0.0	101 1.66 83		2.8 •08 4			0.0			89
F51100.0 11/06/67 1450	5050 5050	4.59 98.0	10.4	61 16	FC	8.1 8.2	190			5.6 .24 12		0.0	97 1.59 83		3.3 .09 4			0.1			86 7
F51100.0 12/04/67 1504	5050 5050	7.40	11.1 96	♦ 8 8	FC	7.7	121			4.2 .18 14		0.0	50 .82 67	~~	4.0 •11 9	•••		0.1			55 14

STATION N OATE TIME S		G.н. г Q	UO SAT	Té	EMP	PH LAB FLD	EC LAB FLD	MINEP	RAL CON	ISTITUE	NTS IN	MILL MILL PERC	IGRAMS	PER L ALENTS ACTANCI 504	ITER PER L E VALU CL	ITER E NOB	M F	ILLIGP	AM5 PE	R LITER TOS SUM	TH
					F51	10000				MAU	RIVER	AT AH	CATA (6A1				CC	NTINUE	D	
F51100.00 01/0d/68 1650	5050 5050	5.07 313.0	12.2 99	44 6	FC	7.8 7.5	162			4+3 +19 11		0.0	76 1.25 77		3.7 .10 6			0.1			72 10
F51100.00 02/05/68 1315	5050 5050	8.45 3460.0	12.5	45 7	F C	8.0	105		~~	2.6 •11 10		0.0	50 .82 76		2.2	**		0.0			46 5
F51100.00 03/04/68 1415	5050 5050	6.67 1330.0	10.9	53 11	FC	8.0 7.5	123			2.8 .12 9		0.0	60 .98 79		1.1 •03 2			0.1			55 6
F51100.00 04/01/68	5050	6.26 1160.0	10.6 97	53 11	F C	7.8 7.4	124			3.0 .13		0.0	59 .97 78	••	3.0			0.1			54
F51100.00 05/06/68 1415	5050	4.57 130.0	10.3 107	64 17	FC	8.5 8.0	200	30 1.50 74	3.6 .30	4.9 •21	0.8	3.0 •10 5	93 1.53 79	9.5 20	3.5 +10 5	S•0	**	0.0		113 101	90 9
F51100.00 06/03/68 1245	5050	4.10 66.0	10.0	63 17	F C	8.0 8.0	210			5.0 •22 10		0.0	104 1.71 81		3.1 +09 4	••		0.0			94 9
F51100.00 07/08/68	5050	3.23 16.0	9.6 108	71 21	FC	8.3 8.0	234		~ =	3.9 +17 7		0.0	120 1.97 84		2.9	••		0.1			108 10
F51100.00 08/05/68	5050	3.46 27.0	10.4 115	69 20	FC	8.3 8.3	224	••	**	5.4 .23		0.0	117 1.92		2.7 •08		••	0.0			102
F51100.00 09/10/68	5050	3.45 19.0	10.2	69 20	FC	7.5	226	33 1.65 76	3.5 •29	5.4 +23		0.0	119 1.95	13 •27	3.0 •08	0.1		0.0		108 116	97 0
1034	2030				FEC			10			COREN	AT 02	10	34	5						
F55100.00 10/03/67 0830	5050 505n	5.65 107.0	9.4 89	50 13	F	7.7 7.3	212			6.0 .26 12		0.0	78 1.28 60		7.7 .22 10			0.0		••	89 25
F55100.00 11/07/67 0845	5050	39.0	10.0 94	55 12	FC	7.8 7.4	217			6.0 .26 11		0.0	83 1.36 62		6.8 :19 8	••		0.0			92 24
F55100.00 12/05/67	5050	9.39 4736.0	11.5 96	46 7	F C	7.4	104			4.1 .18 17		0.0	39 .64	**	5.1 .14 13			5.0			43 11
F55100.00 01/09/68	5050	6.25 325.0	11.8	44 6	FC	7.7 7.3	136			3.9		0.0	50 .82		4.6		•=	0.0			52 1)
F55100.00 02/05/68	5050	7.59 1490.0	11.8	47 8	FC	7.8 7.3	91			2.6	••	0.0	37 .61	••	4.7 +13			0.0	••		33 3
F55100.00 03/04/68	5050	7.03 1070.0	10.6	53 11	F C	7.7 7.3	98	**	••	2.8	••	0.0	40 •66 67		3.2			0.0			45 12
F55100.00 04/02/68	5050	6.90 940.0	10.8 96	51 10	F C	7.3 7.3	101			2.8		0.0	42	••	3.0			0.1	•••		41 7
F55100.00 05/06/68	5050	5.82 201.0	10.2	62 16	FC	8.3 7.4	140	22 1.10	1.0	4.2 .18	0.0 20.	0.0	60 .96 77	8.2 .17	4+1 +12 9	0•1		0.0		86 70	59 10
F55100.00 06/04/68 0800	5050	5.60 198.0	10.0	59 14	FC	d.0 7.4	150			4.3 .19 12	•=	0.0	63 1.03 68		4+1 +12 8		••	0.0			63 12
F55100.00 07/09/68 1220	5050 5050	5.06 54.0	9.8 106	67 19	FC	8.0 7.3	171	**		3+8 +17 9		0.0	74 1.21 70	**	4.9 +14 8			0.0			72 12
F55100.00 08/05/68 1445	5050 5050	4.85 26.4	10.3 116	71 21	F C	8.1 7.5	173			5.8 .25 14		0.0	73 1.20 69		5.9 +17 9	**	••	0.0			75 15
F55100.00 09/09/68 1415	5050 5050	4,95 52,5	12.6	65 18	F C	8.1 8.1	185	25 1.25 69	3.3 .27 15	6.0 .26 14	0.9 20.	0.0	72 1.18 70	17 • 35 21	5.7 •16 9	0•0		0.0		109 93	76 17
					F611	0000				EEL	RIVER	AT 50	OTIA (6)							
F61100.00 10/04/67 0740	5050 5050	9.54 722.0	9.3 87	55 12	FC	8.2	333	45 2.25	12 .99 27	9.2	1.5	0.0	170 2.79 73	38 •79 21	7.6	0+4	0 • 1	0.1	11	208	162 23
F61100.00 11/08/67 1000	5050 5050	8.66 245.0	9.1 92	61 16	FC	8.1 7.9	353	48 2.+0 60	14 1•15 29	9.5 .41 10	1.4	0.0	176	33 •69 18	9.1 •26 7	0.4	0.2	0.0	9.2	211	178
F61100.00 12/06/67	5050	16.18 18000.0	11.3 95	46 7	FÇ	7.9 7.6	144	18	4.8 .39 26	4.5 .20	e.0 20.	0.0	64 1.05	15 •31 20	4.2	2.3 .04	0 • 1	0.1	8.4	 90	64 12

	STATION N	UMBER					Рн	EC	MINER	AL CON	STITUE	NTS IN	MILL	IGRAMS	ALENTS	PER L	ITER	м	ILLIGA	AMS PE	R LITE	R
	DATE TIME S	LAB	G.H. R Q	D0 54T	TE	EHP	LA8 FLD	LAB FLU	CA	MG	NA	*	PERC CU3	HC03	SO4	E VALU CL	E NO3	F	ы	S102	105 50M	TH
						F611	10000				EEL	RIVER	41 50	OTIA ((6)				co		D	
	F61100.00 01/10/68 0930	5050 5050	20.76 49100.0	11.4 95	46 7	F C	7.2 7.8	107	13 .65 52	5.2 .43 35	2.0 .n9 7	2.7 .07 6	0.0	48 .79 72	8.0 •17 16	2.8 .08 7	3+0 +05 5	0.2	0.1	8.7	105	54 15
	F61100.00 02/06/68 1430	5050 5050	15.71 19550.0	11.6	52 11	FC	7.7 7.6	136	16 .d0 56	4.9 •40 28	4.6 •20 14	1.1 .03 2	0.0	68 1.12 81	9.0 +19 14	2.1 .06 4	0.6	0.1	0.0	11	83	60 4
ļ	F61100.00 03/05/68 1500	5050 5050	12.85 6350.0	10.6	56 13	FC	7.9 7.8	169	20 1.00 57	6.2 .51 29	4.8 .21 12	0.9 20.	0.0	87 1.43 82	11 •23 13	2.4	0.5	0 • 1	0.0	11	100	76 5
ł	F61100.00 04/03/68 0915	5050 5050	12.17 4690.0	10.7 98	53 11	F C	7.9 7.7	169	21 1.05 58	6.1 .50 28	5.1 .22 12	1.0 .03 2	0.0	87 1+43 81	13 •27 15	1.6 .05 3	1.4 .02 1	0.1	0.6	10	103	78 7
	F61100.00 05/08/68 0915	5050 5050	10.33 1230.0	10.2	61 16	F C	8.1 8.0	226	28 1.40 59	8.0 .66 28	6.4 •28 12	1.0 .03 1	0.0	120 1.97 81	17 +35 14	3.5 +10 4	0.8	0.1	1.1	10	135	103
	F61100.00 04/04/68 1415	5050 5050	9.86 764.0	9.9 109	69 20	FC	8.1 8.2	250	31 1.55 59	8.9 .73 28	7.4 .32 12	1.2 .03 1	0.0	132 2.16 81	18 •37 14	4.2 •12 5	0.7.01	0.2	0.5	7.3	144	114 6
	F61100.00 07/10/68 0845	5050 5050	8.92 226.0	8.7 96	69 20	FC	8.1 8.2	310	40 2.00 60	11 .90 27	9•3 •40 12	1.5 .04 1	0.0	164 2+69 81	21 •44 13	6.2 .17 5	0.9 .01	0 • 1	0.2	7.8	178	145 11
	F61100.00 08/07/68 0930	5050 5050	8.74 168.0	11.5 129	70 21	FC	8 .3 8 .4	316	38 1.90 56	12 •99 29	10 •44 13	1.6 .04 1	2.0 .07 2	163 2.67 79	22 •46 14	6.2 17 5	0.0	0.2	0.0	7.5	179	145 8
	F61100.00 09/11/68 0915	5050 5050	8.66 125.0	9.8 106	67 19	FC	8.3 8.2	334	41 2.05 57	13 1.07 30	10 •44 12	1+6 +04 1	2.0 .07 2	165 2•71 75	25 •54 15	11 •31 9	5•0	0.2	0.1	8.3	194	156 17
						F611	5450				EEL	RIVER	AT SO	UTH FO	RK (5)							
	F61154.50 10/04/67 0820	5050 5050	122.0	9.1 93	61 16	FC	8.2	351	-•		8.4 .37 11		0.0	146 2.39 74		6.7 19 5			0.1			146 27
Ì	F61154.50 11/08/67 1045	5050 5050	8.8	9.2 95	62 16	FC	8.2 7.7	373		••	9+0 +39 10		0.0	156 2.56 68		8.8 25 6			0.2			162 34
	F61154.50 12/06/67 1000	5050 5050	7100.0	11.8 98	45 7	F Ç	8.1 7.8	141			4+3 +19 13		0.0	65 1.07 75		3.5 •10 7	••		0.1			63 10
	F61154.50 01/10/68 1010	5050 5050	1290.0	12.1 101	45 7	F C	7.8 8.1	119			4+1 +18 15		0.0	64 1.05 88		3.0 .08 6	••		0.3		••	63 11
	F61154.50 02/07/68 0815	5050 5050	10150.0	11.8 101	47 8	FC	8.2 7.8	142			3+2 +14 9	••	0.0	73 1•20 84		1.6 •05 3	••		0.1			63 3
	F61154.50 03/06/68 0750	5050 5050	4100.0	11.0 99	51 10	FC	8.1 7.6	170			3.9 .17 10		0.0	84 1.38 81		0.0	••		0.1	**		81 12
	F61154.50 04/03/68 1015	5050 5050	2985.0	10.8	54 12	F	8.1 7.9	170			3.8 .17 10		0.0	84 1.38 81		2.8 .08 4	••		0.2			78 9
	F61154.50 05/08/68 1030	5050 5050	725.0	9.8 100	62 16	F C	8.5 7.8	217	30 1.50 63	5.8 .48 20	8.3 .36 15	1.0 .03 1	4.0 .13 6	100 1.64 72	15 •31 14	7.4 :21 9	0.0		0.1	••	124 121	99 11
	F61154.50 06/05/68 1030	5050 5050	372.0	9+1 94	64 17	F C	8.3 8.0	249			6.1 .27 10		0.0	122 2.00 80		3.3 .09 3			0.1	•-		113 13
	F61154.50 07/10/68 1040	5050 5050	79.0	8.6 99	72 22	F Ç	8.2 7.9	305			6.4 •28 9		0.0	147 2+41 79		4+6 +13 4			0.2	••	••	140 20
	F61154.50 08/07/68 1030	5050 5050	83.0	8.1 89	68 19	F Ç	8.3 7.9	338			9.2 •40 11		0.0	162 2.66 78		5.6 •16 4			0.1			158 25
	F61154.50 09/11/68 1030	5050 5050	61.0	7.9 86	67 19	FC	8.1 8.0	369	43 2,15 57	14 1+15 31	9.8 .43 11	1+6 +04 1	0.0	158 2.59 72	38 •79 22	7.4 •21 6	0.0		0.1		194 191	163 34
						F613	2950				EEL R	IVER AH	OVE O	UTLET	CREEK (50)						
	F61329.50 10/04/67 1100	5050 5050	81.0	9.6 104	65 18	FC	8.2 8.2	270			12 •52 19		0.0	116 1.90 70		8.4 .24 8	0.4	••	0.4	••	**	112
	F61329.50 11/08/67 1350	5050 5050	8.6	10.3	63 17	FC	8.2 8.2	276			12 •52 18		0.0	128 2.10 76		9.2 •26 9	0.8		0.4	••		120 15
	F61329.50 12/05/67 1310	5050	680.0	11.7 97	43 6	F	7.9 7.4	144			5.7		0.0	66 1.08 75		4.1 .12	1.6		0.2			62 8

STATION M DATE TIME S	LAB	G.H. Q	00 5AT	TE	MP	PH LAB FLD	EC LAU FLU		AL COM	STITUE	NTS IN K	MILC MILC PERC	IGRAMS IEQUIV CENT RE HCO3	PER L ALENIS ACTANC SO4	ITER PER LI E VALUE CL		M F	ILLIGN	AMS PER	ELTE TOS SUM	R TH NCH
					F613	2950				EEL R	IVER A	BUVE (DUTLET	CREEK	(50)			CO	NTINUE)	
F61329.50 01/10/68 1315	5050 5050	5.62 1500.0	11.6 97	44 6	FC	7.6 7.4	97	**		3.9 .17 17		0.0	47 •77 79		3.1 •09 9	1.6 .03 3		0.3			31 0
F61329.50 02/07/68 1130	5050 5050	6.37 2130.0	11.7 100	45 7	FC	8.0 7.5	128			3.4 +15 11		0.0	65 1.07 83		2.4 .07 5	0.9 .01		0 • 1			55 2
F61329.50 03/06/68 1445	5050 5050	4.14 544.0	10.8	51 10	F C	8+1 7+9	149			3.8 .17 11		0.0	7+ 1.21 81		1.1 •03 2	0.2		0.2			68 6
F61329.50 04/04/68 0745	5050	3.69 258.0	10.4 98	53 11	FÇ	8.2 7.8	166			4.2 .18 10	**	0.0	84 1.38 83		3,1	0.0		٥.2			78 9
F61329.50 05/08/68 1330	5050	3.08 53.0	9.7 111	70 21	F C	8.6 8.3	239	29 1.45 57	8.1 .67 26	5.8 .38 15	1.1 .03	4.0 •13	111 1.62 76	15 •33	4.2	0.0		0.3		137 126	106 9
F61329.50 06/05/68 1415	5050	2.99 33.0	9.8 102	66 18	F C	8.3 8.4	232		••	8.6 .37	49.44	0.0	109 1.79 77		4.2 +12	0.0		0.4			97 8
F61329.50 07/10/68 1655	5050	2.60	9.4 126	85 29	FC	8+1 8+4	260		**	8.6 .37		0.0	120 1.97 75		4.8 +14 5	0•0	**	0.5			107
F61329.50 08/07/68 1630	5050	2.29 5.8	10+5 134	81 27	FC	8.2 8.4	250			12		0.0	104 1.71 68		6.1 .17	0 • 1		0.5			99 14
F61329.50 09/12/68 0915	5050	2.12	8.5	69 20	FC	8.4 8.2	272	28 1.40	9.5 .78 28	12	1.6	0.0	111	29 •60	7.7 •22 8	0•0		0.6		152 143	109 18
	5050				F613	5000		51	20	OUTLET	T CREF			23 ALE (51	н)						
F61350.00 10/04/67 1045	5050 5050	2.67 14.6	9.2 95	61 16	F C	8.0 8.0	377		•••	20 .87 23		0.0	150 2.46 65		34 • 96 25			2.7			136 13
F61350.00 11/08/67 1335	5050	2.41	10.0	63 17	F C	8.3 8.1	362			19		0.0	156 2.56 70		26 •73			2.3			135 7
F61350.00 12/06/67	5050	5.07 783.0	11.5 96	44 6	F C	7.6 7.0	101	ay ah		5.0	•••	0.0	45	••	5.1 .14			0.1		•*	43 6
F61350.00 01/10/68	5050	7.34 3240.0	11.6 97	44 6	F C	7.3 7.5	68			3.4		0.0	29		4.0			0.2			31 7
F61350.00 02/07/68	5050	4.46 352.0	11.3	4 8 8	FC	7.9 7.3	113	•=		4.0 .17		0.0	55 •90		4.0 +11			0.2			4 4 0
F61350.00 03/06/68	5050	3.86 194.0	10.9	52 11	F C	8.2 7.8	140	•*		5.1		0.0	69 1.13		3.2		•-	0.2			57 1
F61350.00 04/04/68 0715	5050	3.62 125.0	9.9 95	54 12	F C	8.0 7.6	153			5.5 .24		0.0	100		4.9 +14	••		0.3			68 0
F61350.00 05/08/68 1315	5050	2.94 24.0	10.0	67 19	F C	8.5 8.1	224	24 1.20	7.8	10	1.1 .03	4.0 •13	104 1.71 78	5.6 •12	8.2	0.0		0.7		124 112	92 0
F61350.00 06/05/68 1345	5050	2.77 12.0	9.9 101	65 18	FC	8.3 8.3	242		••	11 •48		0.0	122 2.00		8.8 •25			0.9			98 0
F61350.00 07/10/68 1720	5050	2.41	8.8 113	81 27	F C	8.3 8.3	285	••	••	14 •61 21	••	0.0	135 2.21 77	••	15 •42			1+4	P **		114
F61350.00 08/07/68 1645	5050 5050	2.32	10.2	84 28	F C	8.4	293	**	••	16 •70 23	••	0.0	128 2.10 71	••	20			1.7			110 5
F61350.00 09/12/68 0940	5050	2.40	8.2 92	68 19	F C	8.4 8.2	361	31 1.55	13 1.07 30	20 .87 25	1.5		149 2.44 71	10	28	0.2		2.9		177 180	130
				1	F630	1000			EEL R.	IVER M	IDDLE	FORK,	AT DOS	RIDS	(50)						
F63010.00 10/04/67 1130	5050	123.0	9.5	62 16	FC	8.4 8.2	373			10		1.0	122		15 •42	0.5		0.2			157 56
F63010.00 11/08/67 1415	5050	86.0	10.5	63 17	FC	8.1 8.4	387		••	13 •57		0.0	133 2.18 56		16 •45	••		0.2	•-		162 53
F63010.00 12/06/67 1330	5050	1350.0	12.3	41 4	FC	8.07.5	188			4.9 .21		0.0	80 1.31 69		3.6	1.3		0.1			86 21

STATION N		G.H.	DO	TE	MP	PH	EC	MINER	AL CON	STITUE	NTS IN	MILL MILL PERC	IGRAMS IEQUIV	PER LI ALENTS	PER L	TER	ч	ILLIGR	AMS PE	LITE	я тн
TIME S	AMPLER	Q	SAT			FLD	FLU	CA	MG	NA	К	C03	HC03	504	CL	NO 3	F	H	5102	5UM	NCH
					F63(01000			EEL R	IVER.	MIDULE	FORK	AT DO	5 RIDS	(5C)			CO	NTINUE)	
F63010.00 01/10/68 1345	5050 5050	9110.0	12.0 98	42 5	FC	7.9 7.9	110			2.6 •11 10		0.0	58 •95 86		2.0 .06 5	2•1 •03 ?		0.2			50 3
F63010.00 02/07/68 1200	5050 5150	3980.0	12.3 103	44 0	FC	8.4 7.8	142			2.8 .12 8		2.0 .07 4	67 1.10 77	••	1.6 .05 3	0.6		0.1			63 5
F63010.00 03/06/68 1100	5050 5050	1340.0	11.3 101	49 9	FC	8.1 8.0	159			3.2 14 8		0.0	78 1.28 80		1.1 ±03 1	0 • 1		0,1			73 9
F63010.00 04/04/68 0815	5050 5050	1580.0	11.0 99	49	FC	8.2	159			3+1 +13 8		0.0	80 1.31 82		1.9 .05 3			0.1			73 8
F63010.00 05/09/68 0745	5050 5050	9.65 435.0	10.0 99	57 13	F C	8.4 7.9	182	25 1.25 68	4.7 .39 21	4+4 +19 10	0.9 .02 1	2.0 .07 4	84 1+38 78	12 •25 14	2.5 .07 4	0•0		0.0		107 93	82 10
F63010.00 06/05/68 1445	5050 5050	9.05 220.0	9.6 96	63 17	F C	8.2	221			5+1 +22 9		0.0	105 1.72 77		3.3 .09 4	0 • n		0.1			100
F63010.00 07/10/68 1355	5050 5050	8+01 47+0	8.8 115	83 28	FC	8.3 8.2	310			6.5 .28 9		0.0	130 2.13 68		7.7 •22 7	0 • 0	••	0.2			139 33
F63010.00 08/07/68 1600	505J 5050	7.56 15.0	9.5 123	82 27	FC	8+3 8+4	325	••	••	10 •44 13		0 • 0	115 1.89 58		12 • 34 10	0 • 0		0.2			146 52
F63010.00 09/12/58 0830	5050 5050	7.57 19.0	9.0 102	69 20	FC	8.4 8.2	340	39 1.95 57	11 •90 26	12 •52 15	1.5 •04 1	0.0	110 1.80 55	52 1.08 33	13 •37 11	0 • 0		0.2		202 183	142 52
					F630	5000				MIL	L CREE	K NEAR	COVEL	0 (5E)							
F63050.00 12/05/67 1420	5050 5050	81.0	12.2	41 4	FC	7.9 7.3	155		••	5.5 .24 15		0.0	70 1+15 74		4+0 +11 7	1+3 +02 1		0.2			66 9
F63050.00 01/10/68 1430	5050 5050	725,0	11+4 97	44 6	FC	7+7 7+4	104			3.6 .16 15		0.0	50 .82 78	••	2.7 •08 7	1.4 .02 1		0.2			44 3
F63050.00 02/07/68 130 ⁰	5050 5050	291.0	11+4 101	47 8	FC	8.2 7.4	148			3.8 .17 11		0.0	76 1.25 84		3.1 .09 6	0.6 .01		0.1			64 2
F63050.00 03/06/68 1200	5050 5050	144.0	10.7	51 10	FC	8.0 8.0	233		••	5.9 .26 11		0.0	124 2.03 87		2.7 •08 3	0.5		0.1			105
F63050.00 04/04/68 1300	5050 5050	60.0	10.8	59 14	FC	8.5 8.2	254			6.2 .27 10		4+0 +13 5	137 2.25 88	••	3.5 +10 3	•-		0.2			120
F63050.00 05/09/68 0845	5050 5050	7.6	8.9 91	59 14	F C	8.6 7.8	375	36 1.80 47	19 1.56 41	10 +44 11	1+4 +04 1	6.0 •20 5	195 3.20 84	11 •23 6	5,8 +16 4	0 • 4 • 0 1		0.1		186 185	170 0
F63050.00 06/06/68 0904	5050 5050	3.1	8.5 93	62 16	FC	8.5 7.8	388			11 •48 12		5+0 +17 4	208 3.41 87		4+5 +13 3	0 • 0		0.1			178 0
					F631	0500				WILLIA	M5 CRE	EK NEA	R COVE	LO (5F))						
F63105.00 10/04/67 1200	5050 5050	1.61 4.4	9.8 110	66 18	FC	8.4 8.2	290			5.1 .22 7		2.0 .07 2	150 2.46 84		3.1 .09 3	0.0	••	0.1			140
F63105.00 11/08/67 1530	5050 5050	1.43	10.5 113	62 16	FC	8.5 8.4	305			5.2 .23 7		5.0 .17 5	156 2.56 83		3.6 •10 3	••		0.0			153 17
F63105.00 12/06/67 1545	5050 5050	2.58 51.0	11.7 98	42+	5F 8C	8.0 7.5	142			2.9 13 9		0.0	66 1.08 76	••	1.6 •05 3	0+4 +01		0.2			64 10
F63105.00 01/10/68 1515	5050 5050	3.46 166.0	11.8 98	42 5	F Ç	8.0 7.5	90	••	••	2.3 .10 11		0.0	44 • 72 80	**	1+4 +04 4	0 • 7 • 01 1	•••	0.1	••		40 4
F63105.00 02/07/68 1445	5050 5050	2.40 38.0	11.1 99	47 8	FC	7.8 7.5	96	••	••	1.9 .08 8		0.0	46 • 75 78		1.5 .04 4	0.3	••	0.0	~~		45 8
F63105.00 03/06/68 1230	5050 5050	2.45 59.0	10.8	49 9	FC	8.0	126		••	2.4 •10 7		0.0	62 1.02 80		0.0	0.0		0.0			59 8
F63105.00 04/04/68 0930	5050 5050	2.39	11.1 101	48 8	FC	8.0 7.8	121			2.2 .10 8		0.0	61 1.00 82		2.0	0.0	••	0.1			55 5
F63105.00 05/09/68	5050	1.98 13.0	10.1	57 13	FC	d.4 8.0	165	21	6.4	3.3	0.7	2.0	83 1.36	9.9	1.6	0 • 0		0.0		94 86	79 8

STATION N DATE TIME S	UMBER LAG	б.н. Q	UQ SAT	TE	MP	PH LAS FLO	EC LAB FLU	MINER	AL CON	ISTITUE NA	NT5 IN K	MILL MILL PERC CO3	IGRAMS IEQUIV CENT RE HCO3	PER L ALENTS ACTANC 504	ITER PER L E V4LU CL	ITER E NO3	м F	ILLIGR/ B	M5 PE	R LITER TDS SUM	R TH NCH
					FAR	0500				w111 TA		EK NEA	P COVE	10 (55	,			c0;	TINIE	n.	
5/3105 00		1 30	10.0	4.0		- 2	146			2 2	3 5 12	0.0		20 (3)	1 4	0 "		0.0			
0930 0930	5050 5050	5.8	10.0	15	C	8.2	100		••	3+3 +14 7		0.0	1.57	••	+05 2	0.0		0.0			9
F63105.00 07/10/68 1545	5050 5050	1.3	8.9 119	83 28	FC	8.2	252			3.4 +15 5		0.0	136 2.23 88		0.5	ε.0		0.0			121
F63105.00 08/07/69 1500	5050 5050	1.48	9.3 125	84 28	F C	8.5 8.4	273			5•0 -22 8		3.0 •10 3	144 2.36 86		1.9 .05 1	0.1		0.0			13+ 11
F63105.00 09/11/68 1540	5050 5050	1.52	9.0 113	77 24	FC	8.5	583	33 1.65 53	15 1.23 39	5.2 .23 7	1.3 .03	3.0 .10 3	143 2.35 74	22 •45	2.1 60.	0.4		0.0		173 152	144 22
					F631	2000			EEL RI	VER. M	IDULE	FURK.	AHOVE	BLACK	BUTTE	RIVER	(53)				
E63120.00			9.5	62	F	8.3	318			14		0.0	110		20	0.5		0.2			129
10/0+/67 12+0	5050 5050		102	16	C	8.4				•61 19			1.80		•56	.01					39
F63120.00 11/08/67 1535	5050 5050		10.3	61 16	C	8.3 8.4	LOF			16 •70 19		0.0	1.95		25 •71 19	•01		د ٥			137
F63120.00 12/06/67 1520	5050 5750		12.0 98	40+	5F 7C	7.7 7.1	155			4.3 .19 12		0.0	67 1.10 70		3.6 •10 6	0.6.		0.2			67 12
F63120.00 02/07/68 1510	5050	2320.0	12.1 102	43 6	F C	8.1 7.6	106			2.2		0.0	55 •92 86		2.0 .06	0.3		0.0			49 3
F63120.00 03/06/68	5050	920.0	11.6	45 7	FC	8.0 7.5	105			2.1		0.0	52		0.0	0.1		0.0			48
1310	5050									8			80								
F63120.00 04/04/68 0945	5050 5050	500.0	11.6 102	46 7	FC	8.0 7.8	103	•=		2.1 •09 8		0.0	54 •89 86		1.5 •04 3	0.0		0.1	••		46 2
F63120.00 05/09/68 0950	5050 5050	290.0	10.4	55 12	FC	8.1 7.5	113	16 • 30 68	2.7 .22 19	2.9 .13 11	0.6 20.	U.0	56 .92 87	4.0 .05 3	2.3 •06 6	0•1		0.0		79 56	51 5
F63120.00 06/06/68 1000	5050 5050	77.0	9.9 92	58 14	FC	8.2	154	••		4.2 .18 11		0.0	71 1.16 75		4+0 +11 7	0.0		0.1			66 8
F63120.00 07/10/68 1525	5050	17.0	8.3 107	80 26	FC	8.2 8.1	279	••		7.8 .34 12		0.0	109 1.79		15 •42 15	0•0	••	0.2	••		116 27
F63120.00 08/07/68	5050	9.5	9.0 118	81 27	FC	8.4 3.4	362		••	14 •61	••	2.0	114 1+87 51		26	0.0	••	0.2			139 42
F63120.00 09/11/68	5050	9.0	9.2 116	77 24	F C	8.4 8.4	334	5.0	28 2.30	15	1.6	1.0	113	34	23	0.0		0.3		197 163	129 35
Ideb	2020				F632	0000		0	(1 	LACK R	1775 R	L TVER N	JI IFAR CO	VELO (20						
F63200.00	5050	14.72 37.0	9.1 101	65 18	FC	8.3	378			7.2 .31		0.0	134 2.20		3.4 •10	0.0	••	0.1			171 61
1240 F63200.00 11/08/67	5050	14+48 7+8	9.9 105	60. 15.	SF 8C	8.0 8.4	382	•••		8 6.9 .30	••	0.0	58 133 2+18		2 4.0 .11	0.0		0.0			171 62
1545 F63200.00 12/05/67	5050	15.14	11.6	42 5	FC	7.9	254			7 5.1 •22		0.0	57 82 1.34		2 2.4	1.0		0.2			115 48
1515	5050	16.34	11.8		F	8.2	144			8		0.0	52		2	0.5		0.1			65
02/07/68	5050 5050	590.0	101	6	c	8.0				•11			1.13		•01	•01					9
F63200.00 03/06/68 1330	5050 5050	16.96 1360.0	10.9 96	46 7	FC	8.2 7.5	156			2.8 •12 7		0.0	72 1.18 75		0.0	0.1	••	0.0			75 16
F63200.00 04/04/68 1000	5050 5050	16.34 590.0	11+1 101	48 8	FC	8.2	159		••	2.8 •12 7	••	0.0	76 1.25 78		0.0	0.0		2.0			76 14
F63200.00 05/09/68 1010	5050 5050	15.26	9.7 101	59 14	FC	8.4 8.0	208	32 1.60 76	3.6 .30 14	4.4 •19 9	0.7	2.0 .07 3	91 1.49 72	21 •44 21	2.6 .07 3	0.0		0.0		120 111	95 17
F63200.00 06/06/68 1030	5050 5050	14.86	9.5	60 15	FC	8.4	252			4.8 .21 8		2.0	110 1.80 71	••	1.8 •05	0.0		0.0			117
F63200.00 07/10/68	5050	14.37	8.0	81 27	FC	8.3	315	••		4.6 .20		0.0	126	••	1.7.05	0.0		0.0	••	••	146

STATION	NUMBER					Рн	FC	MINER		STITUE	NTS IN	MILL	IGRAMS	PER L	ITER PER LI	TER	M	LLIGR	AMS PEI	RLITE	4
UATE	LA3	G.H.	DO	TE	MP	LAB	LAB	CA	MG	NA	*	PERC	ENT RE	ACTANCI	E VALUE	NOR	F	я	5102	TOS	TH.
TIME	SAMPLER	i a	JAI			F LO	r CU	Ç4			~	003	1003	304		10 3		.,	3105	50.1	A C M
					F63	20000			н	LACK B	UTTE RI	IVER N	EAR CO	VELO (5н)			co	NTINUE	0	
F63200.0 08/07/68 1445	5050 5050	14.20 4.2	8.6 113	81 27	FC	8.5 8.4	364		**	7.3 .32 8		3.0 .10 2	123 2.02 55		8°5 5°5	0.1		0.1			154 48
F63200.0 09/11/68 1510	5050 5050	14+19 4+1	8.9 112	77 24	F C	8.4	369	5.3 .26 8	34 2.79 81	8.0 .35 10	1+4 +04 1	1.0 .03 1	107 1.75 50	79 1+64 47	3.1 •09 3	0.0		0.1		219 184	155 66
					F64)	10000			EEL RI	VER. 5	OUTH FO	о кк , н	EAR MI	RANDA	(7)						
F64100.0 10/04/67 0855	00 7 5050 5050	4.17 360.0	8.8 90	61 16	FC	8.3 8.0	268			11 •48 17		0.0	127 2.08 77		7.2 .20 7	2+4 +04 1		0.1			111 7
F64100.0 11/08/67 1120	5050 5050	3.28 83.0	9.9 101	61 16	F C	8.4 8.3	299			11 •48 16		1.0 .03 1	151 2.48 82		8.9 .25 8			0.1			130 5
F64100.0 12/05/67 1030	5050 5050	7.53 3874.0	11.5 98	46. 8.	SF OC	7.8 7.3	129			5.5 .24 18	••	0.0	60 .98 75		3.9 •11 8	2+1 •03 2		0.1			51 2
F64100.0 01/10/68 1040	5050 5050	13.40 16400.0	11.9 101	46 7	FC	7.6 8.2	91			4.5 .20 21		0.0	45 •74 81		4.1 .12 13	2.6 .04 4		0.2			45 8
F64100.0 02/07/68 0900	0 5050 5050	7.29 2690.0	11.7 103	49 9	F C	8.0 7.5	126			4+4 +19 15		0.0	62 1.02 80		2.9 •08 6	1 • 0 • 02 1	•••	0.0	••		50 0
F64100.0 03/06/68 0830	5050 5050	5.77 1010.0	10.2 92	51 10	FÇ	8.1 7.6	150		••	5.0 .22 14		0.0	73 1.20 80		2.2	0 • 1		0.0			61 1
F64100.0 04/03/68 1130	5050 5050	5.24 1330.0	10,9	56 13	F C	8.0 7.7	155			5.4 •23 14		0.0	80 1.31 84		4.0 •11 7	0.0		0.1			69 4
F64100.0 05/08/68 1115	0 5050 5050	4.34 278.0	10.2	64 17	F C	8.5 8.0	202	25 1.25 59	6.2 .51 24	7.9 •34 16	1.1 .03 1	3.0 •10 5	96 1.57 79	9.2 .19 10	4.9 +14 7	0•0		0 • 1		116 104	88 5
F64100.0 06/05/68 1100	5050	4.18 190.0	8.8 93	66 18	F C	8.1 8.0	219			8.0 •35 15		0.0	111 1.82 83		4.7 •13 5	0.0		0.1			93 2
F64100.0 07/10/68	5050	3.77 71.0	9.5 112	75 23	FC	8.3 8.1	259			7.5 .33 12		0.0	135 2•21 85		5.4 +15 5	0 • 1		0.1			113 3
F64100.0 08/07/68	0 5050 5050	3.56 44.0	10.5 119	71 21	F C	8.3 8.4	264	••		10 • 44 16		Ú.O	126 2.07 78		6.6 •19 7	0 • 1		0.1		*=	106 3
F64100.0 09/11/68 1100	5050 5050	3.69 53.0	10.8 120	69 20	FC	8.2 8.4	278	18 • 90 31	18 1.48 52	10 •44 15	1.5 .04	0.0	142 2.33 83	13 •27 10	7.4 •21 7	0•0		0.2		143 138	120
					F653	30000			v	AN DUZ	EN RIVE	ER NEA	R BRIO	GEVILL	E (5A)						
F65300.0 10/02/67 1110	5050 5050	3.69 27.0	9.5 96	60 15	F C	8.1 8.2	306			8.1 .35 11	40	0.0	139 2.28 74		4.8 +14 4			0.0			137 23
F65300.0 11/06/67 1600	0 5050 5050	3.70 25.0	10.2 107	64 17	F C	8.3 8.2	312			8.7 .38 12		0.0	139 2.28 73		6.1 17 5	•-	•-	0.1			137 23
F65300.0 12/06/67 0820	5050 5050	6.38 1520.0	12.4	42 5	F C	8.2	144		••	4+1 +18 12	••	0.0	67 1.10 76		2.8 .08 5	••		0.1			64 9
F65300.0 01/10/68 0835	5050 5050	10.24 7600.0	13.2 104	41	F C	8.0 8.3	91		••	2.6 .11 12		0.0	50 .82 90		2.3 .06 6			0.2			45 4
F65300.0 02/06/68 1230	5050 5050	6.68 1520.0	12.2 103	46 7	F C	8.1 7.5	115	•=		2.6 .11 9	••	0.0	62 1.02 88		1 • 2 • 03 2			0 • 1			52 1
F65300.0 03/05/68 1415	0 5050 5050	6.05 695.0	11.1 101	52 11	FC	8.1 7.7	141			3.2 .14 9		0.0	69 1.13 80		0.0		•-	0.0			65 9
F65300.0 04/01/68 1540	0 5050 5050	6.01 666.0	10.6	53 11	FÇ	8.1 7.6	137			3.0 .13 9		0.0	69 1.13 82		2.0			0.1			68 12
F65300.0 05/08/68 0830	5050 5050	5.05	10.2	57 13	F C	8.5	202	28 1.40 66	5.6 •46 22	5.1 .22 10	1.0 .03 1	3.0 •10 5	95 1.56 78	13 •27 13	3.0 .08 4	0 • 1		0.0		186	93 10
F65300.0 06/05/68 0845	5050 5050	4.93 71.0	9.7 96	60 15	F C	8.4 7.9	226			5.2 .23 10		1.0 .03 1	111 1.82 80		2.4	••		0.1			102
F65300.0 07/10/68 0740	5050 5050	4.67 16.0	8.2	65 18	FC	8.2	288	••		5.6 .24 8		0.0	143 2.35 81		3.3 .09 3			0.0			131 14

STATION	NUMBER					Рн	EC	MINER	AL CON	STITUE	NTS IN	MILL	IGRAMS	PER LI	TER PER LI	TER	м	ILLIGRA	MS PER	R LITE	4
DATE TIME	LAU	G.H. Q	DO SAT	TE	MP	LAS FLD	LAB FLU	CA	MG	NA	ĸ	PERC CO3	ENT RE HCO3	ACTANCE 504	VALUE	N03	F	9	5102	TDS	TH
					F65:	30000			v	AN DUZ	EN RIVE	R NEA	R BR1D	GEVILLE	(54)			COM	TINUE	J	
F65300. 08/07/6 0840	00 8 5050 5050	4.62 13.0	9.1 96	64 17	FC	8.3 8.0	308	••		9.0 .39 12		0.0	152 2.49 60		4.0 .11 3			0.0			147 23
F65300. 09/11/6 0815	00 8 5050 5050	4.64 17.0	8.6 87	64 17	FC	8,4 8.0	315	40 2.00 63	9.7 .80 25	8.8 .38 12	1.6 .04 1	5.0 •17 5	135 2.21 70		4.B +14 4	0.0		0.0			140 21
					F71)	10000				MATTOL	E RIVER	NEAR	PETRO	LI4 (7A	()						
F71100. 10/03/6 1415	00 7 5050 5050	6.22 492.0	9.2 93	61 16	F C	7.7 7.8	243			8.6 .37 15		0.0	80 1.31 53		5.5 •16 6	••		0.0			94 29
F71100. 11/07/6 1515	00 7 5050 5050	5.22	10.6	64 17	FC	8.1 8.1	297	•-	**	11 •48 16		0.0	121 1.98 66	••	6.2 •17 5			0.1			123 24
F71100. 12/05/6 1605	00 7 5050 5050	6.78 3600.0	11.0 97	50 9	FC	7.6 7.4	134	•••	••	6.1 .27 20		0.0	51 • 84 62		4.2 .12 8	•-		0.1			52 10
F71100.0 01/09/60 1545	00 8 5050 5050	5.64 2168.0	11.3 98	49 9	FC	7.0 7.6	80		**	5.6 .24 30		0.0	26 •43 53		6.7 .19 23		••	0.2			32 11
F71100.0 02/06/60 1030	00 8 5050 5050	6.07 2680.0	11.2	51 10	FC	7.9 7.3	129	••		4.8 .21 16	••	0.0	56 .92 71		3.9 +11 8			0.1			47 1
F71100. 03/05/6 1145	00 8 5050 5050	4.62 1120.0	10.8	54 12	FC	7.9 7.4	150	••	••	6.0 .26 17	••	0.0	64 1.05 70		3.8 .11 7	••		0.0			64
F71100.0 04/02/60 1515	00 3 5050 5050	4.14 732.0	11.1 103	54 12	FC	8.0 7.8	151	••	•-	5.8 •25 16		0.0	69 1+13 74		4.3 +12 7	•-		0.1			63 7
F71100.0 05/07/60 1245	00 3 5050 5050	3.05 186.0	10.2	64 17	F C	8.4 7.8	194	26 1.30 66	3.6 .30 15	7.5 •33 17	1.0 .03 2	2.0 .07 4	84 1.38 73	16 • 33 17	3.8 .11 6	0.0		0.0		115 101	80 8
F71100.0 06/04/60 1200	5050 5050	2.91 147.0	9.9 110	70 21	F C	8.2 8.1	210		••	7.7 .33 15	•••	0.0	96 1+54 73		3.7 .10 4			0.1			86 9
F71100.0 07/09/60 1610	5050 5050	2.56	9.1 110	78 25	F C	8.2 8.3	250	•-		6.7 .29 11		0.0	111 1.82 72		3+9 +11 4			0.1			105
F71100.0 08/06/60 1450	00 3 5050 5050	2.38 49.0	10.3 123	77 24	FC	8.3 8.4	255			10 •44 17	••	U.0	116 1•90 74		4.7 +13~ 5		••	0.1			110 15
F71100.0 09/10/60 0915	00 3 5050 5050	2.45 57.0	10.5 111	65 18	FC	7.9 8.0	290	38 1.90 64	7.3 .60 20	9.8 +43 14	1.6 .04 1	0.0	127 2.08 72	32 •67 23	4+8 +14 5	0•0		0.1		157 156	125 21
					F751	0000				BEA	R RIVER	NEAR	CAPET	OWN (78)						
F75100.0 10/03/6 1340	5050	10.0	9.3 101	68. 19.	0F 9C	 8.1	315														
F75100.0 11/07/63 1430	5050	7.0	11.5 119	63 17	FC	8.4	340	••	••				••								
F75100.0 12/05/67 1520	5050	350.0	11+1 97	49 9	FC	7.6	172														
F75100.0 01/09/60 1510	5050	600.0	11.1 96	48 8	F C	8.0	216		••					•••							
F75100.0 02/06/60 0930	5050	250.0	11.6	48 8	FC	7.6	131	••	••	••	••		••	••		•-		- P			
F75100.0 03/05/60 1100	5050	100.0	10.9	53 11	FC	7.7				••	••		••			•.		••			
F75100.0 04/02/60 1435	5050	60.0	10.8 100	54 12	F C	7.8	185														
F75100.0 05/07/60 1150	5050 5050	30.0	10.2	63 17	FC	8.5	257	37 1.85 71	4.0 .33 13	9.4 •41 16	1.2 .03 1	4.0 •13 5	96 1.57 63	29 .60 24	6.6 •19 8	0.1		0.1	••	152 138	109 24
F75100.0 06/04/60 1100	5050	30.0	10.6	62 16	F C	8.2	246			••	••					••					
F75100.0 07/09/68 1535	5050	25.0	8.8	80 26	FC	8.3	278	••	•••	••	•••					••					
TABLE D-2 (Continued)

MINERAL ANALYSIS OF SURFACE WATER

DATE LAN G.M. DATE LAN G.M. TIME SAMPLER Q	PH DO TEMP LAB SAT FLO	EC MINERAL LAB FLD CA M	CONSTITUENTS IN MG NA K	MILLIGRAMS PER LITER MILLIEGUIVALENTS PER PERCENT REACTANCE VA CO3 HCO3 SO4 CL	R LITER MI ALUE - NO3 F	LLIGRAMS PER LITER TOS TH 3 SIOZ SUM NCH
	F7510000		BEAR RIVE	R NEAR CAPETOWN (78)		CONTINUED
F75100.00 08/06/68 15.0 1300 5050	10.0 // r 119 24 C 8.2	300			3 0 0	0.2 168 140
F75100+00 09/10/68 5050 14+9 0830 5050	10.6 61 F 7.9 107 16 C 8.2	385 54 6 2.69 6 70	•••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •••• •••• ••••• ••••• ••••••	2+48 1+02 +i 66 27	23 6	207 36
	6					

		TABLE	D-3		
TRACE	ELEMENT	ANALYSES	6 OF	SURFACE	WATER
	N	arth Code	tal	A	

	STATION	DATE	CONSTITUENTS IN MICROGRAMS PER LITER															
STATION	NUMBER	DATE	(A1)	(Be)	(Bi)	(Cd)	(Co)	(Cr)	(Cu)	(Fe)	(Go)	(Ge)	(Mn)	(Mo)	(Ni)	(Pb)	(ті)	(V)
Eel River above Outlet Creek (5d)	F61329.5 0	5- 8-68 9-12-68	21 19	<0.6 <0.6	<0.3 <0.3	<1.4 <1.4	<1.1 <1.1	<1.4 <1.4	3.1 <1.4	27 8.6	<5.7 <5.7	<0.3 <0.3	2.h < 1.h	<0.3	0.9 1.7	<1.h 2.3	<0.6 <0.6	0.4
Eel River, Middle Fork et Dos Rios (5c)	P63010.00	5- 9-68 9-12-68	94 4.0	<0.6 <0.6	<0.3 <0.3	<1.4 <1.4	<1.4 <1.4	<1.h <1.h	3.1 <1.4	3.1	5.7	<0.3 <0.3	7.h < 1.h	<0.3	1.8	<1.4 <1.4	<0.6 <0.6	C.1 0.6
Zel River at Scotie (6)	P61100.00	5- 8-68 9-11-68	149 20	<0.6 <0.6	<0.3 <0.3	<1.4 <1.4	<1.4 <1.4	<1.4 <1.4	3.9 <1.4	> 18	<5.7 <5.7	<0.3 <0.3	9.7 < 1.4	<0.3	1.7	<1.h 2.9	<0.6 <⊅.6	0.k 0.k
Klemath River below Iron Gate Dam (1f)	¥31600.00	5- 6-68 9- 4-68	23 20	<0.6 <0.6	<0.3 <0.3	<1.4 <1.4	<1.4 <1.4	<1.4 <1.4	3.h <1.h	> 16 21	<.7 <.7	<0.3 <0.3	17 < 1.4	<0.3 1.0	1.2	<1.4 <1.4	<0.6 <0.3	6.9 7.1
Klemath Fiver near Klamath (3)	7 31100.00	5- 7-68 9-10-68	274 6.3	<0.6 <0.6	<0.3 <0.3	<1.4 <1.4	4.b 4.b	<1.4 <1.4	9.1 <1.4	> 5h 9.h	<5.7 <5.7	<0.3 <0.3	50 < 1.4	<0.3 1.1	8.3 2.9	4.4 4.4	2.1 <0.6	1.7 2.1
Klamath Piver at Orleans (2c)	F31220.01	5- 6-68 9- 9-68	126 7.1	<0.6 <0.6	<0.3 <0.3	<1.h <1.h	<1.h <1.h	<1.4 <1.4	3.9 <1.4	> 24 5.7	<5.7 <5.7	<0.3 <0.3	23 < 1.4	<0.3 1.0	5.6 2.9	<1.4 <1.4	1.9 <0.6	1.5
Klamath River near Seied Valley (2b)	F31430.00	5- 6-68 9- 4-68	63 11	<0.6 <0.6	<0.3 <0.3	<1.h <1.h	<1.h <1.h	<1.4 <1.4	4.3	> 23	< 5. 7 < 5. 7	<0.3 <0.3	23 < 1.4	<0.3 0.9	4.9 1.9	<1.4 <1.4	<0.6 <0.6	3.4 5.1
Mad River neer Arcata (6a)	P51100.00	5- 6-68 9-10-68	3h 14	<0.6 <0.6	<0.3 <0.3	<1.4 <1.4	<1.h <1.h	<1.4 <1.4	2.1 <1.4	5k 9.7	<5.7 <5.7	<0.3 <0.3	83 < 1.4	<0.3 0.9	0.9 1.8	<1.4 <1.4	<0.6 <0.6	0.5 0.h
Trinity Piver et Hoopa (%)	F41090.00	5- 6-68 9- 9-68	246 4.3	<0.6 <0.6	<0.3 <0.3	<1.4 <1.4	4.4 4.4	<1.h <1.4	<1.4 <1.4	>126	<5.7 <5.7	<0.3 <0.3	47 < 1.4	<0.3 0.9	3.7 1.2	<1.4 <1.4	3 <u>4</u> <0.6	1.1 0.6
												•						
> Results are more than the amount indicat < Results are less than the amount indicat	ted.	Al - Alumi Be - Beryl Bi - Bismu Cd - Cadmi Co - Cobal	num lium th um			Cr - Cı - Fe - Ga -	Chromium Copper Iron Callium		COME	Ge Mn Mo Ni	- Germa - Manga - Molyb - Nicke	nium mese denum 1			Pb - Ti - V - V Zn -	Lead Titaniu Vanadium Zipc		

TABLE D-4 MISCELLANEOUS CONSTITUENTS IN SURFACE WATER NORTH COASTAL AREA

	Station	Data	Turbidity i	n Jackson	n Condle Units	PO4	Other Constituents *
Station	Number	Date	Hellige	Hach	Jackson Candle	in mg/l	in mg/l
r River at Capetown (7b)	F75100.00	10- 3-67 11- 7-67 12- 5-67 1- 9-68 2- 6-68 3- 5-68 3- 5-68 4- 2-68 5- 7-68 6- 4-68 7- 9-68 8- 6-68 9-10-68	1	7 0.5 222 240 31 2 0.3 1.2 0.5 0.5	1060 3600		•
ck Butte River near Covelo (5h)	F63200.00	10- 4-67 11- 8-67 12- 6-67 2- 7-68 3- 6-68 4- 4-68 5- 9-68 6- 6-68 7-10-68 8- 7-68 9-11-68	1 0.8 25 20 1 0.2 1 2 2	2 0.1 21 165 53 11 0.5 1.5 0.5		0.04 0.10 0.55 0.08 0.04 0.26 0.02 0.00 0.07 0.00	
River above Outlet Creek (5d)	F61329.50	10- 4-67 11- 8-67 12- 5-67 1-10-68 2- 7-68 3- 6-68 4- 4-68 5- 8-68 6- 5-68 7-10-68 8- 7-68 9-12-68	3 1 70 20 0.9 1 1	6 0 108 40 11 1.0 0.5	68 840	0.01 0.27 0.44 0.24 0.03 0.06 0.20 0.00 0.00 0.00 0.08 0.07	
l River at Scotia (6)	F61100.00	10- 4-67 $11- 8-67$ $12- 6-67$ $1-10-68$ $2- 6-68$ $3- 5-68$ $4- 3-68$ $5- 8-68$ $6- 4-68$ $7-10-68$ $8- 7-68$ $9-11-68$	22* 5* 2800* 30* 1* 1* 1* 1* 10*	8 0.4 260 68 32 2 0.5 0.3 1.3	650 2150	0.18 0.15 0.22 0.09 0.20 0.15 0.12 0.08 0.03 0.00 0.06	Li 0.01; Sr 0.40 Li 0.02; Sr 0.01 Li 0.01; Sr 0.20 Li 0.00; Sr 0.20 Li 0.00; Sr 0.19 Li 0.00; Sr 0.26 Li 0.00; Sr 0.30 Li 0.00; Sr 0.37 Li 0.00; Sr 0.42 Li 0.00; Sr 0.45 Li 0.01; Sr 0.48
l River at South Fork (5)	F61154.50	10- 4-67 $11- 8-67$ $12- 6-67$ $1-10-68$ $2- 7-68$ $3- 6-68$ $4- 3-68$ $5- 8-68$ $6- 5-68$ $7-10-68$ $8- 7-68$ $9-11-68$	4 0.5 520 70 3 0.9 1 4 1	5 0.5 225 70 38 3 1	500 3150		
l River, Middle Fork above Black Butte River (5g)	F63120.00	10- 4-67 11- 8-67 12- 6-67 2- 7-68 3- 6-68 4- 4-68 5- 9-68 6- 6-68 7-10-68 8- 7-68 9-11-68	2 0.5 25 35 3 0.9 1 3 2	1 0.2 85 15 13 2 0.5 0.2 0.3	15	0.04 0.29 0.04 0.03 0.01 0.00 0.01 0.02	

These values reported in ppm of Silica by the U.S. Geological Survey Li - Lithium, Sr - Strontium

TABLE D-4 (Continued) MISCELLANEOUS CONSTITUENTS IN SURFACE WATER NORTH COASTAL AREA

	Station	Data	Turbidity	in Jacksor	Candle Units	PO4	Other Constituents
Station	Number	Date	Hellige	Hach	Jackson Candle	in mg/l	in mg/l
Eel River, Middle Fork at Dos Rios (5c)	F63010.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0.5 105 70 7 0.9 0.8 3 1	4 0.5 225 72 40 3 0.2 0.3	98 1050	0.02 0.09 0.48 0.48 0.04 0.06 0.02 0.00 0.00 0.00 0.08	
Eel River, South Fork near Miranda (7)	F64100.00	$\begin{array}{c} 10- \ 4-67\\ 11- \ 8-67\\ 12- \ 6-67\\ 1-10-68\\ 2- \ 7-68\\ 3- \ 6-68\\ 4- \ 3-68\\ 5- \ 8-68\\ 6- \ 5-68\\ 7-10-68\\ 8- \ 7-68\\ 9-11-68\end{array}$	130 1 450 12 1 0.9 1 3 2	175 1.4 165 33 8.7 0.5 1.5 0.3	400 1850	0.08 0.79 0.83 0.40 0.07 0.10 0.24 0.04 0.04 0.01 0.00 0.02	
Klamath River above Hamburg Reservoir Site (lc)	F31470.00	11- 9-67 1- 3-68 3- 6-68 5- 6-68 7- 3-68 9- 4-68	12 1 14 3	32 11 2 1.5 2.3		0.57 0.46 0.40 0.38 0.39 0.61	
Klamath River at Orleans (2c)	F31220.01	$10-2-67\\11-6-67\\12-4-67\\1-8-68\\2-5-68\\3-4-68\\4-1-68\\5-6-68\\6-3-68\\7-8-68\\8-5-68\\8-5-68\\9-9-68$	3 2 35 25 1 3 0.8 4 2	4 34 11 42 60 14 3 1 0.3 1.4 0.8			
Klamath River below Iron Gate Dam (lf)	F31600.00	$\begin{array}{c} 10- \ 9-67\\ 11- \ 8-67\\ 12-12-67\\ 1- \ 3-68\\ 2-13-68\\ 3- \ 6-68\\ 4- \ 1-68\\ 5- \ 6-68\\ 6-11-68\\ 7- \ 3-68\\ 8- \ 6-68\\ 9- \ 4-68\\ \end{array}$	2 2 2 4 4 2 2 2 5 3	2.3 11 11 2.0 1.5 2.5 1.0		0.63 0.60 0.26 0.39 0.36 0.42 0.22 0.34 0.28 0.44 0.58 0.66	
Klamath River near Klamath (3)	F31100.00	10- 3-67 11- 7-67 12- 5-67 1- 9-68 2- 5-68 3- 4-68 4- 2-68 5- 7-68 6- 4-68 7- 9-68 8- 6-68 9-10-68	41* 5* 1650* 30* 5* 3* 2* 15*	28 18 105 102 31 7 11 0.5 1.7 1.0	380	0.50 0.39 0.23 0.03 0.18 0.20 0.07 0.08 0.10 0.27 0.24	L1 0.01; Sr 0.1 L1 0.02; Sr 0.01 L1 0.01; Sr 0.10 L1 0.00; Sr 0.1 L1 0.00; Sr 0.10 L1 0.00; Sr 0.09 L1 0.00; Sr 0.09 L1 0.00; Sr 0.09 L1 0.00; Sr 0.10 L1 0.00; Sr 0.14 L1 0.00; Sr 0.14 L1 0.01; Sr 0.14
Klamath River near Seiad Valley (2b)	F31430.00	11- 9-67 1- 3-68 3- 6-68 5- 6-68 7- 3-68 9- 4-68	2 2 5 3	1.3 18 0.5 1.6		0.47 0.37 0.25 0.36 0.28 0.53	

* These values reported in ppm of Silica by the U.S. Geological Surveys.

TABLE D-4 (Continued)

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER

NORTH COASTAL AREA

	Station	Date	Turbidity	in Jackson	n Candle Units	PO4	Other Constituents
Station	Number	Dure	Hellige	Hach	Jackson Candle	mg/l	in mg/l
asta River near Yreka (la)	F21050.00	10- 9-67 11- 8-67 12-12-67 1- 3-68 2-13-68 3- 6-68 4- 1-68 5- 6-68 6-11-68 7- 3-68 8- 6-68 9- 4-68	235213542	10 10 0.6		0.63	
uith River near Creacent City (3a)	F01300.00	10- 3-67 11- 7-67 12- 5-67 1- 9-68 2- 5-68 3- 5-68 4- 2-68 5- 7-68 6- 3-68 7- 9-68 8- 6-68 9-10-68	20 1 100 - - 15 0 0.5 0.8 3 1	24 0.5 79 11 60 16 6.8 0.5 0.5 0.3			
rinity River at Hoopa (4)	F41090.00	10- 2-67 11- 6-67 12- 4-67 1- 8-68 2- 5-68 3- 4-68 4- 1-68 5- 6-68 6- 3-68 7- 8-68 8- 5-68 8- 5-68 9- 9-68	40 1 105 - - 60 11 2 3 2 2	5 145 91 34 6 12.5 3.7 0.4	250	0.14 - 0.95 0.03 0.53 0.35 0.09 - 0.05 0.09 0.05 0.00 0.08 0.04	
rinity River at Lewiston (4a)	F41640.00	10- 2-67 11- 6-67 12- 4-67 1- 8-68 2- 5-68 3- 4-68 4- 1-68 5- 6-68 6- 3-68 6- 3-68 7- 8-68 8- 5-68 8- 5-68 9- 9-68	1 5 - 2 2 2 0.8 8 2	1 4 1.5		0.13 0.04 0.09 0.06 0.01 0.02 - 0.01 0.00 0.08 0.02	
rinity River near Burnt Ranch (4b)	F41376.00	11- 6-67 1- 8-68 3- 4-68 5- 6-68 7- 8-68 9- 9-68	0.6 - 1 1 2	5 1.2 0.4		0.04 0.04 0.20 0.00 0.00	
an Duzen River near Bridgeville (5a)	F65300.00	10- 2-67 11- 6-67 12- 6-67 1-10-68 2- 6-68 3- 5-68 4- 1-68 5- 8-68 6- 5-68 7-10-68 8- 7-68 9-11-68	10 1 450 - - 40 1 0.9 0.8 3 -	13 0.5 239 76 19 0.5 0.2	310 1400		
Älliams Creek near Covelo (5f)	F63105.00	10- 4-67 11- 8-67 12- 6-67 1-10-68 2- 7-68 3- 6-68 4- 4-68 5- 9-68 6- 6-68 7-10-68 8- 7-68 9-11-68	2 0.5 25 - 4 2 0.5 2 1	2 0.2 20 - 16 1 1.5 1.5 1.5	158	0.04 0.10 0.18 0.07 0.00 0.04 0.18 0.02 0.00 0.11 0.07	

TABLE D-4 (Continued) MISCELLANEOUS CONSTITUENTS IN SURFACE WATER NORTH COASTAL AREA

	Station	Data	Turbidity	in Jacksor	n Candle Units	PO4	Other Constituents
Station	Number	Doile	Hellige	Hoch	Jockson Candle	in mg/l	in mg/l
Mad River near Arcata (6a)	F51100.00	$\begin{array}{c} 10-2-67\\ 11-6-67\\ 12-4-67\\ 1-8-68\\ 2-5-68\\ 3-4-68\\ 4-1-68\\ 5-6-68\\ 6-3-68\\ 7-8-68\\ 8-5-68\\ 8-5-68\\ 9-10-68\\ \end{array}$	6 2 140 70 1 2 6 3 6	8 0.8 162 20 335 81 54 0.5 3 6 0.5 6.4			
Mattole River at Petrolia (7a)	F71100.00	10-3-6711-7-6712-5-671-9-682-6-683-5-684-2-685-7-686-4-687-9-688-6-689-10-68	390 0.9 800 35 0 0.7 1 3 2	250 137 40 14 1 0.5 7.0 0.6	600 1650		
Mill Creek near Covelo (5e)	F63050.00	12- 6-67 1-10-68 2- 7-68 3- 6-68 4- 4-68 5- 9-68 6- 6-68	60 3 1 0.5	49 35 6 1.4 2 0.1	310	0.23 0.27 0.11 0.08 0.10 0.41 0.06	
Outlet Creek near Longvale (5b)	F61350.00	$10- 4-67 \\ 11- 8-67 \\ 12- 6-67 \\ 1-10-68 \\ 2- 7-68 \\ 3- 6-68 \\ 4- 4-68 \\ 5- 8-68 \\ 6- 5-68 \\ 7-10-68 \\ 8- 7-68 \\ 9-12-68 \\ 9-12-68 \\ - 12-68 \\ -$	6 1 60 4 0 1 0.8 3 2	10 0.5 60 15 6 1.8 0.5 1.5	450		
Redwood Creek at Orick (3b)	F55100.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	400 2 1400 80 2 2 0.8 1 2	68 190 65 42 3.5 1 1.5 0.4 0.8	1350	•	
Salmon Rivér at Somesbar (2a)	F34100.00	5- 6-68 9- 9-68	1. 2				
Scott River near Fort Jones (1b)	F25250.00	10- 9-67 11- 9-67 12-12-67 1- 4-68 2-13-68 3- 6-68 4- 2-68 5- 6-68 6-11-68 7- 3-68 8- 6-68 9- 5-68	1 2 - 5 1 2 8 3 1	5 6.5		0.02	

APPENDIX E GROUND WATER QUALITY

INTRODUCTION

This appendix presents ground water quality data collected during the period from October 1, 1967, through September 30, 1968. The data were collected from a number of major ground water sources in the North Coastal area in cooperation with local agencies. During the 1968 water year, 94 wells were sampled in 12 ground water basins.

At the time of field sampling, pH, specific conductance, and temperature measurements are normally made. Comments on local conditions are noted in field books which are available in the files of the Department of Water Resources.

Laboratory analyses of ground waters were performed in accordance with "Standard Methods for the Examination of Water and Waste Water", 12th Edition.

The Region and Basin and State Well Numbering Systems are described in Appendix C, "Ground Water Measurements".

GROUND WATER BASINS, WATER QUALITY SAMPLES

TABLE E-1 MINERAL ANALYSES OF GROUND WATER

An explanation of column headings follows:

The LAB and SAMPLER agency codes are as follows:

5000 - U.S. Geological Survey 5050 - State Department of Water Resources

- TIME Pacific Standard Time on a 24-hour clock.
- <u>TEMP</u> Water temperature in degrees Fahrenheit at the time of field sampling.
- PH Measure of acidity or alkalinity of water.
- EC The electrical conductance in micromhos at 25° Celsius.
- TDS Gravimetric determination of total dissolved solids at 180° Celsius.
- <u>SUM</u> Total dissolved solids determined by addition of analyzed constituents.
- TH Total hardness.
- NCH Non-carbonate hardness.

The MINERAL CONSTITUENTS are as follows:

В	-	Boron
CA	-	Calcium
CL	-	Chloride
CO3	-	Carbonate
F	-	Fluoride
HCO2	-	Bicarbonate

K - Potassium MG - Magnesium NA - Sodium NO₃ - Nitrate SIO₂ - Silica SO - Sulfate

-68-

TABLE E-I

MINERAL ANALYSIS OF GROUND WATER

.

TATE WELL NUMBER		Рн	£C	MINEH	AL CO	STITUE	NT5 1N	MIL	IGRAMS	S PER L	ITER	TER	H.	ILLIGH	AMS PE	R LITE	я
DATE LAB IME SAMPLER	TEMP	LAB FLD	LA8 FLD	CA	MG	NA	<	PERO CO3	HC03	EACTANC 504	CL CL	N03	F	в	5102	TOS SUM	TH
					5M11	H RIVE	R PLAI	N 1-1	1.00								
16N/01#-17K02 H 17/10/68 5050 1430 5050	60 F 15 C	7.9	279 285	6.4 .32 11	12 1.00 35	26 1.13 40		0.0	46 • 75 26		29 .82 29	50 .81 29				••	66 29
16N/02w-13E01 H 17/10/68 5050 1315 5050	60 F 15 C	7.7 6.3	320 330	12 00. 20	9.7 .80 27	34 1+48 51	1.9 •05 2	0.0	63 1.03 36	12 •25 9	56 1.58 55	0•0		0.0		149 156	70 19
17N/J1W-02G01 A J7/11/68 0930 5050	55.0F 12.7C	6.5	115				••										
17%/01w=04J01 H 07/11/68 5050 1230 5050	55 F 12 C	8+1' 7+3	281 280	4.8 •24 8	30 2.47 85	3.8 .17 6	1+1 +03 1	0.0	160 2.62 88	4.3 .09 3	8.0 .23 8	3.2 .05 ?		0•0		136 134	~134 3
17N/014-14C02 4 07/11/68 5050 0745 5050	64 F 17 C	8.1 6.6	206 205	2+9 +14 7	20 1.64 82	4+2 +18 9	1+4 +04 2	0.0	102 1.67 81	2.0 40.0 2	9.0 •25 12	6.6 .11 5		0.0		100 96	89 6
15N/01W-J5K11 H 37/11/68 1130 5350	56.0F 13.3C	6.7	175														
18N/01#-26H01 H 07/11/68 1030 5050	60 F 15 C	6.6	95									•=					
13N/01W-34M02 H 07/11/68 5050 0810 5050	56 F 13 C	8.6 7.0	394 380	13 •65 16	40 3.35 85	4.0 .17 4					5.2 15 3	•-					500 500
					KLAMAT	H RIVE	R VALL	EY 1-	-2.00								
•7N/02E-20C01 4 08/22/68 5050 1100 5050	62.0F 10.6C	7.0 6.9	429 475			25 1.09 25		0.0	124 2.03 47		21 •59 13	8+5 +14 3	0 • 1		••		144 43
					BL	TTE VA	LLEY	1=3.0	00								
45N/01E-09C02 M 08/21/68 5050 0930 5050	57.0F 13.8C	8.3 7.7	182 175	10 .50 26	8.5 .70 37	15 •65 34	5°2	0.0	100 1.64 92	2.6 .05 3	2.6 .07 4	2•0 50•	••	0 • 0		122 92	60 0
45N/02#-01P01 4 04/21/68 5050 1100 5050	52 F 11 C	8.3 6.5	254 250	22 1.10 41	13 1+07 40	10 •44 16	2.7 .07 3	0.0	129 2•12 80	18 •37 14	1.8 .05 2	6+0 +10 4	••	0.0	••	187 137	108 2
46N/01W-02F01 M 08/22/68 5050 1500 5050	53 F 11 C	8.5 8.1	432 430	24 1.20 26	18 1.48 33	39 1.70 37	6+4 +16 4	1.0 .03 1	237 3.89 88	10 •21 5	4,9 +14 3	8.2 .13 3	••	0.0		223 228	134
46N/01W-06P01 M 08/21/68 5050 1615 5050	51 F 10 C	8.4 7.2	602 625	37 1.85 27	36 2.96 43	43 1.87 27	7.6 +19 3	0.0 •20 3	328 5.38 81	38 •79 12	8.9 •25 4	3.8 .06 1		0.0		328 341	239 0
46N/01W-17801 M 08/21/68 5050 1340 5050	53 F 11 C	7.7 8.2	378 355			34 1.48 39	••	0.0	226 3.71 98	••	3.4 +10 2	••					124
46N/01W-17L01 M 08/21/68 5050 1315 5050	53 F 11 C	8.5	496 490	35 1.75 33	30 2.47 46	24 1.04 19	4.7 +12 2	3.0 •10 2	278 4.56 87	15 • 31 6	4.5 +13 2	9.6 •15 3	•-	0.0		203 262	210 0
€N/02₩-25R02 M 08/21/68 5050 1250 5050	52 F 11 C	7.3 7.1	339 320			13 -•57 16		0.0	134 2.20 64	••	2.1 .06 1	**	••				135 25
◆7N/01₩-23H01 M 08/22/68 5050 1♦14 5050	52 F 11 C	8.5 7.7	4800 5000	67 3.34 6	179 14.71 26	825 35.89 64	75 1•92 3	24 •80 1	822 13.48 24	1390 28.91 52	437 12-32 22	20 .32 1		1+1		3530 3421	905 191
47N/01W-23H02 M 08/22/68 5050 1350 5050	66 F 18 C	7.8 8.0	200 205	5.5 .27 13	5+0 +41 19	29 1.26 60	6.6 .17 8	0.0	104 1+71 86	0.6 •01 1	5+4 +15 8	6.7 .11 6		0 • 1	••	142 110	34 0
47N/02W-21H02 M 08/22/68 5050 1745 5050	52 F 11 C	7+4 7+1	129 128			6.1 .27 20		0.0	70 1.15 89		2.0 .06	••				••	58 1
48N/01E-30F01 M 08/22/68 5050 0915 5050	55 F 12 C	8.5 7.8	363 365	25 1.25 33	16 1.32 35	24 1.04 27	7.1 .18 5	5.0 .17 4	198 3.25 86	12 •25 7	4.5 +13 -3	0 • 1		0.0		197 191	129
48N/01E-31D03 M 08/22/68 5050 0930 5050	71.0F 21.6C	8.6 8.4	483 495	3.5 .17 3	1.8 .15 3	106 4.61 89	9.2 •24 5	6.0 •20 4	269 4.41 88	0.0	8,8 •25 5	8.3 .13 3	•••	0.5		312 276	16 0
+8N/01W-28F01 M 08/22/68 5050 0810 5050	83 F 28 C	8.4	196 200	3.3 .16 7	0.2 1	46 2.00 90	1.2 .03 1	0.0	111 1.82 79	0.6	16 •45 20	1.5 .02 1		0.0		135 123	9
48N/01W-28J01 M 08/22/68 5050 0830 5050	60 F 15 C	8.4 7.5	413 415	35 1.75 40	17 1.40 32	24 1.04 24	6.3 .16 4	5.0 .17 4	231 3.79 86	12 .25 6	4.9 +14 3	3.5 .06 1	•••	0.0	••	269 221	158 0
48N/01W-36J01 M 08/22/68 5050 1000 5050	54 F 12 C	8.6 7.4	1280 1380	34	66 5.43	180	26	33 1.10 7	716	66 1.37	28	7.7	• •	0.0		770 792	357 0

MINERAL ANALYSIS OF GROUND WATER ,

MILL: STATE WELL NUMBER PH EC MINERAL CONSTITUENTS IN MILLI								IGRAMS	PER LI	TER PER LI	TER	м	ILLIGR	MS PER	LITER	2	
DATE LAB TIME SAMPLER	TEMP	LAB FLD	LA8 FLD	CA	MG	NA	ĸ	PERC CU3	ENT RE	ACTANCE 504	CL	5 103	F	ъ	5102	TDS	TH NCH
					544	STA VA	UL FY	1-4-0	0								
42N/05W-20J01 M 08/15/68 5050 0820 5050	63 F 17 C	7.7 6.9	394 375	18 .90 22	25 2.12 53	24 1.04 26	••	0.0	223 3.66 92		6.9 .19 4						151 0
42N/06W-10J01 M 08/15/68 5050 0915 5050	60 F 15 C	8.3 7.3	567 565	19 • 95 16	64 5+31 93	4.0 .17 2		0.0	381 6-25 110		3.7 •10 1						313 1
43N/05W-02C01 M 08/15/68 5050 1230 5050	52 F 11 C	8.3 6.6	262 270	16 •80 30	12 .99 37	19 .83 31	2.0 20. 2	0.0	138 ?•26 87	2.5 .05 2	10 •28 11	1.0 .02 1	• •	0.1	• •••	177	91 0
43N/06W-21R01 M 08/15/68 5050 1000 5050	58 F 14 C	8.2 7.3	480 495	52 2.59 62	14 1.15 28	8.7 .38 9	1.0 .03 1	0.0	224 3.67 92	5.8 .12 3	`3.6 •10 3	5.6 .09 ?		0.0		221 200	189
44N/05W-32C03 M 08/15/68 5050 1120 5050	60 F 15 C	8.2 7.3	1320 1310			113 4.92 37		0.0	557 9.13 69		157 4.43 33			0.0			420 0
44N/05W-34H01 M 08/15/68 5050 1145 5050	56 F 13 C	8.6 7.0	665 655	43 2.15 30	31 2.55 36	51 2.22 31	6.6 .17 2	6.0 .20 3	340 5.58 82	8.5 +18 3	24 •68 10	12 •19 3		0.5	•••	348 349	233 0
44N/06#-22K01 M 08/15/68 5050 1045 5050	63 F 17 C	7•6 7•0	468 465			19 •83 17		0.0	225 3+69 78		11 • 31 6						187 3
45N/05W-06E01 M 08/23/68 5050 0800 5050	72.0F 22.2C	8.2 8.1	881 840	12 •60 6	8.0 .66 7	185 8.05 86	1.8 .05 1	0.0	526 8.63 92	0.5	26 •73 8	0•4 •01	1.9	5,4		531 499	63 0
45N/05W-06Q01 M 05/25/68 5000 5000	57 F 13 C	7.8	430	39 1.95 43	18 1.48 33	25 1.09 24	0.6	0.0	206 3+38 75	19 •37 8	15 •42 9	22 •35 8	0•3	•01	37	260 276	175 3
45N/06W-12G01 M 05/25/68 5000 5000	57 F 13 C	7.7	431	39 1.95 43	18 1.48 33	25 1.09 24	0.5	0.0	206 3.38 75	19 •37 8	15 •42 9	22 •35 8	0 • 3	•05	37	270 276	172 3
45N/06W-19E01 M 08/15/68 5050 1330 5050	63 F 17 Ç	7.8 7.5	388 375			37 1+61 41		0.0	181 2.97 76		2.3 .06 1						112
					SCOTT	RIVER	VALLEY	1=5	• 0 0								
42N/09W-02G01 M 08/16/68 5050 0820 5050	54 F 12 C	8+3 7+1	534 525	56 2.79 49	31 2.55 45	7.0 .30 5	0.6	0.0	308 5.05 91	7•2 •15 3	4.3 .12 2	16 •26 5		0.0		271 273	268 16
42N/09W-27K01 M 08/15/68 5050 0910 5050	56.0F 13.3C	6.7 6.1	57 58	7.1 .35 61	2.0 .17 29	2.3 .10 17	••	0.0	30 • 49 85		8.0 50.						26 2
43N/09W-02G01 M 08/15/68 5050 1510 5050	59 F 14 C	8.3 7.1	547 550	56 2.79 48	34 2.79 48	5+5 +24 4	0.9 .02	0.0	325 5.33 91	12 •25 •4	3.6 .10 2	9•2 •15 3		0.0		260 280	281 15
43N/09W-08F01 M 08/16/68 5050 1110 5050	63 F 17 C	7.2 6.7	111 110	15 •75 67	3.7 .31 27	2.8 .12 10		0.0	66 1.08 97		1.0 .03 2		••				53 0
43N/09W-24F01 M 08/15/68 5050 1630 5050	55 F 12 C	8.2 7.1	489 500	55 2.74 56	30 2.47 50	5+5 +24 4		0.0	312 5.12 104		2.3 .06 1			1.6			261 5
43N/09W-24F02 M 08/15/68 1640 5050	56 F 13 C	7+1	430	••					•••	••			••				
43N/09W-29G02 M 08/16/68 5050 1230 5050	61 F 16 C	7.1 6.1	57 58			2.4 +10 17		0.0	27 •44 77	•-	8.0 20. 3						53 1
43N/10W-14801 M 08/23/68 5050 1100 5050	58+0F 14+4C	7.9 6.5	79 80	8.0 .40 52	3+4 +28 36	1.8 .08 10	0.5 .01 1	0.0	38 62 86	3.3 .07 10	0.9 +03 4	0.0		0.0		63 37	34 3
44N/09W-34R01 M 08/15/68 5050 1540 5050	62 F 16 C	7.2	322 320	40 2.00 62	13 1•12 34	5.8 .25 7		0.0	175 2.87 89		2.7 .08 2						156 13
					HAY	FORK V	ALLEY	1-6.0	0								
31N/12W-12L01 M 07/01/68 5050 1100 5050	63 F 17 C	8.3	168 165	16 • 80 47	8.0 .66 39	6.0 .26 .15		0.0	94 1.54 91	~-	2.5 .07 4	••					73 0
31N/12W-15D01 M 07/01/68 5050 1040 5050	60 F 15 C	8.67.6	928 950	11 •55 6	12 .99 10	192 8.35 84	3.0 .08 1	14 •47 5	520 8.53 86	0.0	22 •62 6	20 .32 .3		0.0		586 529	76 0
31N/12W-15K01 M 07/01/68 5050 1040 5050	61 F 16 C	8.1 6.8	277 275	25 1.25 43	14 1.15 40	11 •48 17	0.5	0.0	142 2.33 82	3.3 .07 2	10 •28 10	10 •16 6		0.0		164 143	120
					MAD	RIVER	VALLEY	1-8.	00								
05N/01E-04H04 H 06/26/68 0745 5050	58.0F 14.4C	7.8	420		••					••		••			••	••	

TABLE E-I (Continued)

MINERAL ANALYSIS OF GROUND WATER

STATE WELL NUMBER		Рн	EC	HINE	RAL CO	STITUE	NTS IN	MILL	IGRAMS	5 PER 1	LITEH 5 PEH L	ITER	м	ILLIGR	AMS PE	R LITE	R
DATE LAB IIME SAMPLER	TEMP	LAB FLD	LAB FLD	CA	MG	NA	ĸ	PERC CO3	HCU3	SO4	CE VALU	е 103	F	ы	5102	TD5 SUM	TH
					MAD	RIVER	VALLEY	1=8.	.00					со	NTINUE	υ	
06N/01E-07M01 H 36/24/68 1315 5050	64 F 17 C	6.8	575							~ =							
06N/01E=17001 H 06/25/68 5050 1120 5050	56 F 13 C	9.2 6.9	448 430	41 2.05 45	26 2•14 47	7.8 .34 7	2.3 .06 1	0.0	227 3•72 82	18 • 37 8	16 •45 10	0 • 1		0+1		226 223	202 202
06N/01E-32F01 H 06/24/68 1540 5050	82 F 27 C	7.9	730										**				
06N/01W-01H01 H 06/24/68 5050 1249 5050	57 F 13 C	7.5	184 185	4+8 +24 13	7.5 .62 33	18 •78 42		0.0	27 • 4 • 23		22 •62 33						43 21
						EUREKA	PLAIN	1-9.	00								
02N/01W-12D04 M 06/27/68 1400 5050	61 F 16 C	7.7	160						•••						•••		
03N/01W-05K01 H 06/26/68 1115 5050	61 F 16 C	6.9	150				••							~~			
03N/02W-35M01 H 06/27/68 0945 5050	55 F 12 C	7.1	915														
04N/01W-08P01 H 06/26/68 1110 5050	61 F 16 C	7.7	160									**					
04N/01W-16H01 H 06/26/68 0910 5050	58 F 14 C	7.6	515		~-												
04N/01W-17801 H 06/26/68 1030 5050	61 F 16 C	7+1	170										60 cq				
05N/01E-18Q01 M 06/26/68 0830 5050	62 F 16 C	7.3	840		**								••				
05N/01W-29Q01 H 06/24/68 5050 1500 5050	59 F 14 Ç	7.9 7.0	290 295	7.3 .36 14	16 1.32 51	20 •87 33	4.5 60.	0.0	65 1.07 39	16 •33 12	26 • 73 27	38 •61 22		0.1		153 158	84 31
					EEL	RIVER	VALLEN	1-1	0.00								
02N/01#-04001 H 06/27/68 5050 1300 5050	59 F 14 C	8.5 7.0	592 575	78 3.89 62	23 1.89 30	8.9 .39 6	3+1 +08 1	5.0 .17 3	294 4.82 77	35 •73 12	8.6 .24 4	18 •29 5		0.1		302 324	288 39
02N/01#-07F01 H 06/27/68 5050 1205 5050	55 F 12 C	8.4 7.1	484 465	33 1.65 34	30 2.47 51	15 •65 13	2.3 .06 1	2.0 .07 1	186 3.05 63	53 1.10 23	23 •65 13	0 • 1		0.0		248 250	206 50
03N/01W-18A01 H 06/26/68 5050 1140 5050	60 F 15 C	8.3 7.0	450 425	26 1.30 28	29 2.39 52	19 .83 18	2.5 .06 1	U.0	225 3.69 80	20 •42 9	14 • 39 8	5.7 .09 2		0 • 1		212 227	196 2
03N/01#-30N01 H 06/27/68 5050 1015 5050	56 F 13 C	8.4	584 475	33 1.65 28	50 4.13 70	8.6 .37 6		0.0 3	290 4.75 81		13 • 37 6						289 41
03N/024-13J01 H 06/26/68 5050 1300 5050	56 F 13 C	8.3 6.8	2460 2450	103 2.14 20	151 12.45 50	120 5.22 21		0.0	239 3.92 15		632 17.82 72	*-					880 685
03N/02W-32Q01 M 06/27/68 5050 0830 5050	55.0F 12.7C	4.9 7.1	1050 1050	29 1.45 17	32 2.63 31	100 4.35 51	4.0 .10 1	0.0	0 • 0	1.0	310 8.74 100	0 • 1		0.1		529 476	204 204
					RO	UND VAL	LLEY 1	-11.0	0								
22N/12W-06L02 M 07/17/68 0700 5050	60.0F 15.5C	7.3	465												~ -		
22N/13W-01J03 M 07/17/68 0745 5050	62 F 16 C	7.6	235					~ *									
22N/13W-12K01 M 07/17/58 0830 5050	60 F 15 C	7.1	380							•							
22N/13W-13A01 M 07/11/68 5050 0910 5050	66 F 18 C	8.4 7.1	253 250	20 1.00 39	11 •96 37	14 •61 24		2.0 •07 2	116 1.90 75		6.9 •25 9	-					98 0
23N/12W-31N01 M 07/17/68 0945 5050	60 F 15 C	7.4	265														

TABLE E-I (Continued)

MINERAL ANALYSIS OF GROUND WATER

										MILLIGRAMS PER LITER									
STATE WEL	L NUMBER			PH	EC	MINE	RAL CON	STITUE	NTS IN	MILL	IEQUIV	ALENTS	PERL	ITER	M	ILLIGH	AMS PEP	R LITER	2
DATE	LAB	TΕ	EMP .	LAB	LAB					PERC	CENT RE	ACTANC	E VALU	E				TOS	TH
TIME 5	AMPLER			FLO	FLU	CA	MG	44	*	Ç03	HC03	504	CL	ECH	F	H	5102	SUM	NC
							R	AV GRUC	LLEY	1-11.0	00					co	INTINUE)	
3384134-3	21.5.2 M	73	F	9 4	627	29	27	20	1 2	2.0	4.0.4		2 9	2.0				224	- 1
2347128-3	5050	22	ć	7 7	610	2 00	2 62	1 26	1+3	2.07	404	0.0	3.0	3.7		0.0		329	211
1400	5050	66		(. J	010	42	39	19	• U J	-07	9.03		5	1				350	(
234/134-2	5P01 M	61	F	8.2	263	33	9.1	5.1	0.9	0.0	132	13	3.1	0.5		0.0		148	120
07/17/68	5050	16	С	7.3	260	1.65	.75	.22	.02		2.15	.27	.09	.03				131	12
1300	5050					53	28	8	1		85	11	4	1					
23N/13#-3	6P03 M	61	F																
07/16/68		16	C	5.9	255														
1230	5050																		
							LAYT	DNVILL	E VALL	Er 1-	12.00								
21N/14W-3	0401 4	58	F																
07/17/68		14	C	7.0	240														
1140	5050																		
21N/15W-0	1L02 M	65	F	8.3	460	47	19	20	1+4	0.0	270	0.5	12	0.9		0.0		246	195
07/17/68	5050	1d	С	7.6	440	2.35	1.55	.87	.04		4.43	.01	.34					232	0
1155	5050					49	32	18	1		93		7						
21N/15H-1	2M02 M	54.	OF	7.5	56	4.7	1.3	4.9	0.7	0.0	25	1.5	3.2	0.0		0.0		50	17
07/17/68	5050	12.	20	6.1	55	.23	.11	.21	.02		.41	.03	.09					29	0
1215	5050					40	19	37	- 4		77	6	17						
							LITT	LE LAK	E VALL	EY 1-	-13.00								
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	ALOT M	63	F	7.2	200	11	10	13		0.0	98		5.4						70
07/17/68	5050	17	C	6.4	200	.55	.85	.57			1.61		.15						0
1315	5050					27	42	28			80		7						
18N/134-0	BLUZ M	63	F	7.5	360	26	20	17		0.0	205		3.1						149
07/17/68	5050	17	С	6.9	385	1.30	1.68	.74			3.38		.09						g
1330	5050					36	45	20			93		S						
16N/134-2	CH03 M	59	F	8.1	205	18	9.9	8.0		0.0	111		4.5						86
07/17/68	5950	14	С	6.5	210	.90	.82	.35			1.82		.13						0
1500	5050					54	40	17			88		6						

TABLE E-2

TRACE ELEMENT ANALYSES OF GROUND WATER

NORTH COASTAL AREA

State Well Number	Date	Constituents in parts per million						
		AI	As	Cu	Fe (Total)	РЪ	Mn	Zn
	SMITH	I RIVER	PLAIN (1-1.00)				
17N-1W-2G1	7-11-68	0.12	0.00	0.00	0,00	0.00	0.00	0.00
BUTTE VALLEY (1-3.00)								
46N-1W-6P1 47N-1W-23H1 48N-1E-30F1 48N-1E-31D3 48N-1W-28F1 48N-1W-28J1 48N-1W-28J1 48N-1W-36J1	8-21-68 8-22-68 8-22-68 8-22-68 8-22-68 8-22-68 8-22-68		0.02 0.04 0.00 0.00 0.01 0.02 0.04					
	SHA	STA VAI	LEY (1-	4.00)				
42N-5W-20J1 42N-6W-10J1 44N-5W-32C2 44N-6W-22K1 45N-5W-6Q41 45N-6W-12G41	8-15-68 8-15-68 8-15-68 8-15-68 5-25-68 5-25-68		0.00 0.00 0.01 0.00		0.01 0.01			
	SCOTT	RIVER V	ALLEY (1-5.00)				
43N-9W-2G1 43N-9W-24F2	8-15-68 8-15-68		0.00					
	MAD F	RIVER VA	LLEY (1	-8.00)				
5N-1E-4H4 6N-1E-7M1 6N-1E-32F1	6-26-68 6-24-68 6-24-68	0.02 0.09 0.06	0.00 0.00 0.00	0.00 0.01 0.00	0.18 14. 0.44	0.00 0.01 0.00	0.00 0.01 0.00	0.01 0.18 0.20
		CONST	TTUENTS	5				
Al Aluminum As Arsenic Cu Copper		Pb Mu Zn	Lead Manganese Zinc					

Fe Iron

.

